
INTRODUCTION TO SPECTRAL THEORY OF HANKEL AND
TOEPLITZ OPERATORS

ALEXANDER PUSHNITSKI

Abstract. These are the notes of the lecture course given at LTCC in 2015.
The aim of the course is to consider the following three classes of operators:
Toeplitz and Hankel operators on the Hardy space on the unit circle and Toeplitz
operators on the Bergman space on the unit disk. For each of these three classes
of operators, we consider the following questions: boundedness and estimates or
explicit expressions for the norm; compactness; essential spectrum; operators of
the finite rank.

1. Introduction

1.1. Lp(T) spaces. We denote by T the unit circle on the complex plane, param-
eterised by eiθ, θ ∈ (−π, π] and equipped with the normalised Lebesgue measure
dθ/2π. Elements f of Lp(T) can be written either as f(z), |z| = 1 or as f(eiθ),
|θ| < π. The norm of f in Lp(T) will be denoted by ‖f‖p,

‖f‖pp =

∫ π

−π
|f(eiθ)|p dθ

2π
.

We will be mostly interested in the space L2(T), which is a Hilbert space. In the
case p = 2, we will drop the subscript of the norm: ‖f‖ = ‖f‖2. The set {zn}n∈Z
is an orthonormal basis in L2, so every f can be represented as

f(z) =
∑
n∈Z

f̂(n)zn, z ∈ T,

where {f̂(n)}n∈Z is the (two-sided) sequence of the Fourier coefficients of f ,

f̂(n) =

∫ π

−π
f(eiθ)e−inθ

dθ

2π
.

We have the Parseval identity

‖f̂‖2`2 =
∑
n∈Z

|f̂(n)|2 =

∫ π

−π
|f(eiθ)|2 dθ

2π
= ‖f‖2L2(T).
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1.2. The harmonic extension. The harmonic extension of f ∈ L1(T) is a func-
tion of z ∈ D = {z ∈ C : |z| < 1}, defined by

f̃(z) =
∑
n≥0

f̂(n)zn +
∑
n≥1

f̂(−n)zn =

∫ π

−π

1− |z|2

|1− e−iθz|2
f(eiθ)

dθ

2π
, z ∈ D.

The integral kernel above can be written as the series

1− |z|2

|1− e−iθz|2
=
∑
n≥0

e−inθzn +
∑
n≥1

einθzn.

In particular, for 0 < r < 1, we will denote

fr(e
iθ) = f̃(reiθ) =

∫ π

−π
Pr(θ − t)f(eit)

dt

2π
,

where Pr(θ) is the Poisson kernel,

Pr(θ) =
1− r2

|1− reiθ|2
=
∑
n≥0

rneinθ +
∑
n≥1

rne−inθ.

The Poisson kernel satisfies the following properties:
(i) Pr(θ) > 0 for all 0 < r < 1 and all |θ| ≤ π;
(ii)

∫ π
−π Pr(θ)dθ/2π = 1 for all r;

(iii) for any δ > 0,
∫
|θ|>δ Pr(θ)dθ → 0 as r → 1.

Proposition 1.1. The map f 7→ fr is a contraction (i.e. it has norm ≤ 1) on
Lp(T) for all 1 ≤ p ≤ ∞. Further, we have

‖fr − f‖p → 0, r → 1, ∀f ∈ Lp(T), p <∞. (1.1)

For f ∈ C(T), the convergence fr → f is uniform on T.

The proof is outlined in exercises.
There are also results about almost-everywhere pointwise convergence fr → f ,

but they are more advanced and we will not need them.

1.3. The Hardy classes. For 1 ≤ p ≤ ∞, the Hardy class Hp
+ = Hp

+(T) is
defined as

Hp
+(T) = {f ∈ Lp(T) : f̂(n) = 0, n < 0}. (1.2)

We will only need the cases p = 1, 2,∞. One also defines

Hp
−(T) = {f ∈ Lp(T) : f̂(n) = 0, n ≥ 0}.

There is a lack of complete symmetry between Hp
+ and Hp

−, since the constant
function belongs to Hp

+ but not to Hp
−.

The functions f ∈ Hp
+ have a natural analytic extension into the unit disk,

f̃(z) =
∑
n≥0

f̂(n)zn =

∫ π

−π

f(eiθ)

1− ze−iθ
dθ

2π
, z ∈ D.
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This formula can be written as

f̃(z) = (f, kz), kz(e
iθ) =

1

1− zeiθ
,

where (·, ·) is the inner product in L2(T), and kz is called the reproducing kernel.
It is clear that for f ∈ Hp

+, its harmonic extension coincides with the analytic

extension. We will use the same notation f̃ and fr(e
iθ) = f(reiθ) for the analytic

extension. As a corollary of (1.1), we have

‖fr − f‖p → 0, r → 1, ∀f ∈ Hp
+, p <∞. (1.3)

Consider the case p = 2. The Hardy space H2
+ inherits the Hilbert space struc-

ture from L2. We will use the orthogonal projection

P+ : L2(T)→ H2
+(T),

∑
n∈Z

f̂(n)zn 7→
∑
n≥0

f̂(n)zn.

It is easy to see that for f ∈ Hp
+, the norm ‖fr‖p is monotone increasing in p (see

exercises). Using this and (1.1), we obtain

‖f‖p = lim
r→1
‖fr‖p, p <∞. (1.4)

In fact, this is also true for p =∞. The above relation is often used as an alternative
definition of the Hp

+ classes; a function f analytic in D is said to belong to Hp
+,

p <∞, if

sup
r<1

∫ π

−π
|f(reiθ)|p dθ

2π
<∞. (1.5)

The space H∞(T) can be alternatively defined as the space of all bounded analytic
functions on the unit disk. Relation (1.4) shows that any function that belongs to
Hp

+ in the sense of (1.2), also satisfies (1.5). The converse implication is not as
straightforward, unless p = 2 (see exercises).

1.4. The Bergman space. Let L2(D) be the space of all square integrable func-
tions on the unit disk, equipped with the standard norm,

‖f‖2L2 =

∫
D
|f(z)|2dA(z) =

1

π

∫ π

−π

∫ 1

0

|f(reiθ)|2rdrdθ;

here dA(z) is the normalised 2-dimensional Lebesgue measure on the unit disk. The
Bergman space A2 = A2(D) is the subspace of L2(D) which consists of analytic
functions. One can analogously define the spaces Ap(D) for all p, but we will not
need them. We will use the orthogonal projection

Π+ : L2(D)→ A2,

sometimes called the Bergman projection. The set {(n + 1)1/2zn}∞n=0 is an or-
thonormal basis in A2; we will call it the standard basis. Using the standard basis,



4 ALEXANDER PUSHNITSKI

it is easy to see that the projection Π+ can be expressed via the Bergman kernel
kw(z) = (1− zw)−2:

(Π+f)(w) =
∑
n≥0

(n+ 1)wn
∫
D
f(z)zndA(z) =

∫
D

f(z)

(1− zw)2
dA(z).

1.5. The multiplication operators. Let a ∈ L∞(T). We denote by M(a) the
multiplication operator on L2(T):

(M(a)f)(z) = a(z)f(z), z ∈ T.

We will call a the symbol of M(a). It is clear that M(a) is bounded, and ‖M(a)‖ ≤
‖f‖∞ (we will soon see that in fact ‖M(a)‖ = ‖f‖∞). It is also obvious that
M(a)∗ = M(a), and in particular M(a) is self-adjoint for real-valued symbols.

The Fourier transform maps M(a) into a discrete convolution operator in `2(Z):

(M(a)f)n =

∫ π

−π
a(eiθ)f(eiθ)e−inθ

dθ

2π

=
∑
m∈Z

f̂(m)

∫ π

−π
a(eiθ)ei(m−n)θ

dθ

2π
=
∑
m∈Z

â(n−m)f̂(m). (1.6)

Similarly, let a ∈ L∞(D); one can define the multiplication operator M(a) on
L2(D) by

(M(a)f)(z) = a(z)f(z), z ∈ D.
Again, we have the obvious estimate ‖M(a)‖ ≤ ‖f‖∞ (in fact, ‖M(a)‖ = ‖f‖∞).
In contrast to (1.6), in general there is no simple matrix representation for multi-
plication operators on L2(D), because there is no simple basis on L2(D).

1.6. Toeplitz operators on the Hardy space. For a symbol a ∈ L∞(T), the
Toeplitz operator T (a) on H2

+(T) is defined as

T (a)f = P+M(a)f = P+(af), f ∈ H2
+(T).

T (a) is sometimes called Hardy-Toeplitz operator. It is clear that T (a) is bounded
and

‖T (a)‖ ≤ ‖a‖∞.
The Fourier transform maps T (a) onto the class of matrix Toeplitz operators on
`2(Z+); these are infinite matrices of the type {an−m}n,m≥0. Indeed, as a conse-
quence of (1.6), we have

(T (a)f)n =
∑
m≥0

â(n−m)f̂(m).

Clearly, T (a)∗ = T (a) and so, in particular, T (a) is self-adjoint for real-valued
symbols a.
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1.7. Toeplitz operators on the Bergman space. For a symbol a ∈ L∞(D),
the Toeplitz operator T (a) on A2(D) is defined as

T (a)f = Π+M(a)f = Π+(af), f ∈ A2(D).

T (a) is sometimes called Bergman-Toeplitz operator. It is clear that T (a) is
bounded and

‖T (a)‖ ≤ ‖a‖∞.

Bergman-Toeplitz operator can be represented by an infinite matrix in the stan-
dard basis {(n+ 1)1/2zn}n≥0 of the Bergman space:

anm = (n+ 1)1/2(m+ 1)1/2(T (a)zn, zm)L2(D)

= (n+ 1)1/2(m+ 1)1/2
1

π

∫ π

−π

∫ 1

0

a(reiθ)rn+m+1ei(n−m)θdrdθ.

In contrast to the Hardy-Toeplitz case, the matrix {anm}n,m≥0 in general does
not have any simple structure. Important interesting particular cases when the
structure of this matrix simplifies, are

• a(z) = a(|z|) — radial symbols;
• a(z) = a1(r)a2(e

iθ), z = reiθ — factorizable symbols.

1.8. Hankel operators on the Hardy space. Let J on L2(T) be the involution:

(Jf)(eiθ) = f(eiθ).

If f ∈ H2
+ and f̂(0) = 0, then Jf ∈ H2

−. For a symbol a ∈ L∞(T), the Hankel
operator H(a) on H2

+ is defined by

H(a)f = P+M(a)Jf = P+(aJf), f ∈ H2
+(T).

Clearly, we have the norm bound

‖H(a)‖ ≤ ‖a‖∞.

The Fourier transform unitarily maps Hankel operators into the class of matrix
Hankel operators on `2(Z+); these are matrices of the type {an+m}n,m≥0. Indeed,

(H(a)zn, zm) = (P+aJz
n, zm) = (az−n, zm) = â(n+m).

It is easy to see thatH(a)∗ = H(a∗), where a∗(e
iθ) = a(e−iθ). In particular, symbols

that satisfy the symmetry condition a = a∗ generate self-adjoint Hankel operators.

Remark. There are also two types of Hankel operators studied on Bergman space:
“big Hankel” and “little Hankel”. We will not discuss these in this course.
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1.9. The aim of the course. For each of the above four classes of operators (mul-
tiplication operators, Hardy-Toeplitz, Bergman-Toeplitz, Hankel), we will address
the following questions.

• Is the symbol uniquely defined by the operator?
• What are the sufficient (necessary?) conditions in terms of the symbol for

the boundedness of the operator? Is there a simple expression for the norm?
• What are the sufficient (necessary?) conditions for the operator to be com-

pact? To be trace class? To be of the finite rank?
• Is there a simple description of the spectrum of the operator?
• For non-compact operators, is there a simple description of the essential

spectrum?

The multiplication operators is the simplest class of all four; for multiplication
operators, complete answers to all of the above questions are readily available. For
the other three classes, some of the questions above turn out to be very non-trivial.

1.10. Exercises.

Exercise 1.1. Using the properties (i), (ii) of the Poisson kernel, prove that the
map f 7→ fr is a contraction in Lp(T) for all 1 ≤ p ≤ ∞. Hint: for p = 1 and
p = ∞ this is a straightforward calculation. For 1 < p < ∞, let q be the dual
exponent, 1/p+ 1/q = 1; using the Hölder inequality, prove the estimate∣∣∣∣∫ π

−π
fr(e

iθ)g(eiθ)
dθ

2π

∣∣∣∣ ≤ ‖f‖p‖g‖q,
and use the fact that Lq is the dual space to Lp.

Exercise 1.2. Using the properties (i)–(iii) of the Poisson kernel, prove that for
any f ∈ C(T), we have ‖fr − f‖∞ → 0 as r → 1. Hint: write

fr(e
iθ)− f(eiθ) =

∫ π

−π
Pr(θ − t)(f(eit)− f(eiθ))

dt

2π
.

Split the interval of integration into the one where |θ− t| < δ and its complement.
Use the uniform continuity of f and the property (iii) to estimate each of the two
integrals resulting from this split.

Exercise 1.3. Using the above two exercises, prove (1.1). (Hint: C is dense in
Lp for p < ∞.) Show that (1.1) is false for p = ∞. (Hint: fr is continuous for all
r < 1.)

Exercise 1.4. Let f ∈ Lp(T). Prove that ‖fr‖p is monotone increasing in r. Hint:
(fr1)r2 = fr1r2 .
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Exercise 1.5. Let f be a function analytic in the unit disk, satisfying (1.5) with
p = 2. Prove that f ∈ H2

+ in the sense of (1.2). Hint: write the Taylor series of f ,

f(z) =
∞∑
n=0

cnz
n,

and using (1.5), prove that the sequence {cn}∞n=0 is in `2.

2. Multiplication operators

Here we consider the multiplication operators M(a) on L2(T) and on L2(D).

2.1. Uniqueness of the symbol. Let us prove that the symbol a is uniquely
determined by the operator M(a), i.e. M(a1) = M(a2) implies a1 = a2 almost
everywhere. It suffices to prove that M(a) = 0 implies a = 0 almost everywhere.
Suppose to the contrary that a 6= 0 on some set E ⊂ T (resp. E ⊂ D) of a positive
Lebesgue measure. Let χE be the characteristic function of E. Then ‖M(a)χE‖ 6=
0, contrary to the assumption M(a) = 0. This contradiction proves the claim.

2.2. The norm. The norm bound

‖M(a)‖ ≤ ‖a‖∞
is obvious. Let us prove the opposite inequality:

‖a‖∞ ≤ ‖M(a)‖.

Let’s assume ‖a‖∞ > 0 (otherwise there is nothing to prove). For any sufficiently
small ε > 0, there exists a set Eε ⊂ T (resp. Eε ⊂ D) of a positive Lebesgue
measure such that |a(z)| > ‖a‖∞ − ε for z ∈ Eε. Now take f = χEε ; then

|(M(a)f)(z)| ≥ (‖a‖∞ − ε)|f(z)|,

and so ‖M(a)f‖ ≥ (‖a‖∞− ε)‖f‖. It follows that ‖M(a)‖ ≥ ‖a‖∞− ε; since ε can
be taken arbitrarily small, we obtain ‖a‖∞ ≤ ‖M(a)‖.

By a similar argument, it is easy to see that the inclusion a ∈ L∞ is not only
sufficient, but also necessary condition for the boundedness of M(a).

2.3. Non-compactness. Let us prove that the operator M(a) is compact only if
a = 0 almost everywhere.

The proof is very easy in the case of the operator of multiplication in L2(T). If
M(a) is compact, then it maps weakly convergent sequences to strongly convergent
ones. Consider the sequence fn(z) = zn, n ∈ N in L2(T); this sequence converges
weakly to zero, and ‖M(a)fn‖2 = ‖a‖2 6= 0 unless a = 0.

Consider the case of the operator in L2(D). Suppose a 6= 0; then there exists
ε > 0 and a set E ⊂ D of a positive Lebesgue measure such that |a(z)| > ε for all
z ∈ E. Let us choose a disjoint sequence of sets En ⊂ E of a positive Lebesgue
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measure. Consider fn = χEn/‖χEn‖. Then fn converges weakly to zero (exercise).
But we have

‖M(a)fn‖2 =
1

|En|

∫
En

|a(x)|2 ≥ ε

(here |En| is the Lebesgue measure of En). So M(a)fn does not converge strongly
to zero, which contradicts the compactness of M(a).

2.4. The spectrum of M(a). Let H be a separable Hilbert space; we denote by
B(H) the set of all bounded linear operators on H.

For M ∈ B(H), the spectrum of M , denoted by σ(M), is the set of all λ ∈ C
such that the operator M − λ = M − λI is not invertible. Recall that M − λ is
invertible if and only if

Ker(M − λ) = {0} and Ran(M − λ) = H.
The ‘only if’ part is trivial, and the ‘if’ part is the consequence of the deep Banach
inverse map theorem.

If λ ∈ σ(M), then at least one of the following is true:

• Ker(M − λ) 6= {0}, i.e. λ is an eigenvalue;
• (Ran(M − λ))⊥ 6= {0}, i.e. Ran(M − λ) is not dense in H;
• Ran(M − λ) is not closed.

In the finite dimensional case dimH < ∞, we have λ ∈ σ(M) if and only if
Ker(M −λ) 6= {0}; in the infinite dimensional case, the situation is more complex.

Lecture 2:

Let us determine the spectrum of the multiplication operators. For a symbol a,
denote by R(a) the essential range of a, i.e. the set of all λ ∈ C such that the set

Eε = {z : |a(z)− λ| < ε}
has a positive Lebesgue measure. For multiplication operators both on L2(T) and
on L2(D), we have

Theorem 2.1. For any a ∈ L∞, we have

σ(M(a)) = R(a).

Proof. Suppose λ /∈ R(a); let us prove that λ /∈ σ(M(a)). By the definition of the
essential range, for some ε > 0 the set Eε has measure zero. It follows that the
function b(z) = 1/(a(z) − λ) is in L∞, and ‖b‖∞ ≤ 1/ε. Now it is easy to check
that M(b) is the inverse of M(a)− λ = M(a− λ).

Conversely, suppose λ /∈ σ(M(a)); let us prove that λ /∈ R(a). Subtracting a
constant, we can always reduce the problem to the case λ = 0. The statement
0 /∈ σ(M(a)) means that M(a) is invertible, and so for any f ∈ L2(T),

‖f‖ = ‖M(a)−1M(a)f‖ ≤ ‖M(a)−1‖‖af‖.
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From here it is easy to conclude (see Exercise 2.2) that |a| ≥ 1/‖M(a)−1‖ a.e.
on T, and so taking ε < 1/‖M(a)−1‖ in the definition of the essential range, we
conclude that 0 /∈ R(a). �

2.5. Essential spectrum: background.

Definition. An operator M ∈ B(H) is called Fredholm, if RanM is closed and
dim KerM <∞, dim KerM∗ <∞.

Remark. (1) If M is invertible, then KerM = {0} and RanM = H. Due to
the formula

RanM ⊕KerM∗ = H, (2.1)

we also have KerM∗ = {0}. Thus, every invertible operator is Fredholm.
(2) If dimH <∞, then any bounded operator M on H is Fredholm.

Proposition 2.2. An operator M ∈ B(H) is Fredholm iff there exists R ∈ B(H)
such that RM − I, MR− I are compact.

See e.g. Section 4.3 of the book Linear Operators and Their Spectra by
E.B.Davies.

Corollary 2.3. (i) A compact operator is never Fredholm unless dimH <∞.
(ii) M is Fredholm iff M∗ is Fredholm.
(iii) If M is Fredholm, then M +K is Fredholm for any compact operator K.
(iv) If M is invertible, and K is compact, then M+K is Fredholm. In particular,

I +K is Fredholm.

Proof. (i) Suppose M is a compact Fredholm operator. Then RM − I = K, where
K is compact. It follows that I is compact; this is possible only if dimH <∞.

(ii) If RM − I, MR− I are compact, then R∗M∗ − I, M∗R∗ − I are compact.
(iii) If RM−I is compact, then R(M+K)−I = RM+RK−I is also compact.
(iv) Follows directly from (iii). �

Part (iii) of this Corollary shows that Fredholmness is a stable property with
respect to compact perturbations. In fact, it is also a stable property with respect
to perturbations of a small norm:

Proposition 2.4. Let M be Fredholm. Then there exists ε > 0 such that for any
T ∈ B(H) with ‖T‖ < ε, the operator M + T is Fredholm.

See Davies’ book for the proof.

Definition. Let M ∈ B(H). The essential spectrum of M is defined as

σess(M) = {λ ∈ C : M − λ is not Fredholm.}

Remark. (1) There are several distinct non-equivalent definitions of the es-
sential spectrum in the literature. For normal operators, they all coincide.

(2) Clearly, σess(M) ⊂ σ(M).
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(3) λ ∈ σess(M) iff at least one of the following holds:
• dim Ker(M − λ) =∞;
• dim(Ran(M − λ))⊥ =∞;
• Ran(M − λ) is not closed.

Compare this with the situation when λ ∈ σ(M).
(4) If M is an operator in the finite dimensional space, then σess(M) = ∅.
(5) For compact operators M (in infinite dimensional Hilbert space) we have

σess(M) = {0}. Indeed, 0 ∈ σess(M) follows from Corollary 2.3(i). If λ 6= 0,
then M − λI = (−λ)(I −M/λ) is Fredholm by Corollary 2.3(iv).

(6) By Proposition 2.4, σess(M) is a closed set.
(7) By Corollary 2.3(iii), the essential spectrum is stable under compact per-

turbations: σess(M) = σess(M +K) for compact K.

2.6. Essential spectrum of multiplication operators.

Theorem 2.5. For any symbol a ∈ L∞, we have

σess(M(a)) = σ(M(a)) = R(a).

Let us first prove a simple

Lemma 2.6. For any a ∈ L∞, we have either KerM(a) = {0} or dim KerM(a) =
∞.

Proof. M(a)f = 0 means that supp f ⊂ E, where E = {z : a(z) = 0}. If |E| = 0,
then f = 0, and if |E| > 0, then dim KerM(a) =∞. �

Proof of Theorem 2.5. By Theorem 2.1, it suffices to prove the inclusion
σ(M(a)) ⊂ σess(M(a)). Suppose λ /∈ σess(M(a)); let us prove that λ /∈ σ(M(a)).
It suffices to consider the case λ = 0. If 0 /∈ σess(M(a)), then M(a) is Fredholm,
so RanM(a) is closed and KerM(a) and KerM(a) are finite dimensional. By
the previous Lemma, KerM(a) = {0} and KerM(a) = {0}. Thus, we also get
RanM(a) = H. By the Banach’s inverse mapping theorem, it follows that M(a)
is invertible, so 0 /∈ σ(M(a)). �

2.7. Exercises.

Exercise 2.1. Prove that the sequence fn from the proof of non-compactness
converges weakly to zero. Hint: use Cauchy-Schwarz and the fact that for g ∈ L1,
one has

∑
n

∫
En
g(x)dx <∞.

Exercise 2.2. Let a ∈ L∞(T); suppose that there exists a constant C > 0 such
that for any trigonometric polynomial f on T (i.e. for any function of the type
f(z) =

∑
|n|≤N fnz

n, z ∈ T) we have

‖af‖2 ≥ C‖f‖2.
Prove that ess infT|a| ≥ C. Hint: Trigonometric polynomials are dense in L2. Any
characteristic function of a measureable set is in L2. Now argue by contradiction.
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The purpose of the following two exercises is to give an alternative proof of the
inclusion R(a) ⊂ σess(M(a)).

Exercise 2.3. Let M ∈ B(H). Suppose that there exists a sequence {fn}∞n=1 in
H such that infn‖fn‖ > 0, fn → 0 weakly and ‖(M − λ)fn‖ → 0 as n→∞ (such
sequence is called a Weyl sequence for λ). Prove that λ ∈ σess(M).

Exercise 2.4. Let a ∈ L∞, suppose λ ∈ R(a). Construct a Weyl sequence for the
operator M(a) and the point λ and thus prove that λ ∈ σess(M(a)). Hint: your
Weyl sequence should consists of the characteristic functions of an appropriate
family of sets.

3. Toeplitz operators on Hardy space

Notation: Let a ∈ L1(T). We will denote by ã the harmonic extension of a into
D. In particular, if a ∈ H2

+, then ã is the analytic extension of a.

3.1. Uniqueness of the symbol.

Theorem 3.1. Let T (a1) = T (a2) for a1, a2 ∈ L∞. Then a1 = a2 a.e. on T.

Proof. It suffices to prove that T (a) = 0 implies a = 0. As we have already seen,

(T (a)zn, zm) = â(n−m)

for all n,m ≥ 0. It follows that all Fourier coefficients of a vanish, so a = 0. �

3.2. The norm.

Theorem 3.2. For any a ∈ L∞(T), one has

‖T (a)‖ = ‖a‖∞.

As we have the obvious bound ‖T (a)‖ ≤ ‖a‖∞, it suffices to prove that

‖a‖∞ ≤ ‖T (a)‖.
We will give two proofs of the last bound: by using some simple functional analysis
and by using some analytic function theory. For the first proof, we need

Lemma 3.3. Let An be a sequence of bounded operators on a Hilbert space which
converges weakly to an operator A. Then

‖A‖ ≤ lim inf
n→∞

‖An‖.

The proof is an exercise.

First proof of Theorem 3.2. As we already know that ‖M(a)‖ = ‖a‖∞, it suffices
to check that

‖M(a)‖ ≤ ‖T (a)‖.
First observe that

‖T (a)‖ = ‖P+M(a)P+‖,
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where the operator on the r.h.s. acts on L2. Next, the operator M(z) of multipli-
cation by z on L2 is unitary, and therefore

‖P+M(a)P+‖ = ‖M(z)nP+M(a)P+M(z)n‖

for all n ≥ 0. Further, for any k, ` ∈ Z we easily check that

(M(a)P+M(z)nzk, P+M(z)nz`)→ (M(a)zk, z`)

as n→∞. It follows that we have the weak convergence

M(z)nP+M(a)P+M(z)n →M(a)

as n→∞. Applying Lemma 3.3, we get

‖M(a)‖ ≤ lim inf
n→∞

‖M(z)nP+M(a)P+M(z)n‖ = ‖P+M(a)P+‖ = ‖T (a)‖,

as required. �

For the second proof, we need the following statement:

Lemma 3.4. Let a ∈ L1(T), and suppose that the harmonic extension of a obeys
|ã(w)| ≤ C, w ∈ D. Then a ∈ L∞(T) and ‖a‖∞ ≤ C.

The proof of this lemma is outlined in the exercises.

Second proof of Theorem 3.2. Let kw be the reproducing kernel for Hardy space,

kw(eiθ) =
1

1− weiθ
=
∞∑
n=0

weinθ,

then

|(T (a)kw, kw)| ≤ ‖T (a)‖‖kw‖2.

It is easy to see that

‖kw‖2 =
∞∑
n=0

|w|2n = 1− |w|2,

and that

|kw(eiθ)|2/‖kw‖2 =
1− |w|2

|1− weiθ|2
= Pr(θ − t), w = reit,

where Pr is the Poisson kernel. Thus, the above estimate rewrites as

|ã(w)| ≤ ‖T (a)‖, w ∈ D.

By Lemma 3.4, we obtain that ‖a‖∞ ≤ ‖T (a)‖, as required. �
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3.3. Non-compactness.

Theorem 3.5. T (a) is compact only if a = 0.

Proof. Assume that T (a) is compact. Then it maps weakly convergent sequences
to strongly convergent ones. In particular, ‖T (a)zk‖ → 0 as k →∞. On the other
hand, for all n ∈ Z and all k ≥ 0 such that k + n ≥ 0, we have

â(n) = (T (a)zk, zn+k).

Sending k →∞, we obtain â(n) = 0 for all n, so a = 0. �

3.4. The spectrum. In general, the description of the spectrum of a Toeplitz
operator is a difficult problem. We will consider two classes of symbols for which
one can make some progress: a ∈ H∞(T) and a ∈ C(T). We will prove

Theorem 3.6. Let a ∈ H∞(T); then

σ(T (a)) = clos(ã(D)).

Let us start with a technical

Lemma 3.7. (i) Let a ∈ L2(T). Suppose that for some C > 0 and for all f ∈
H∞+ , we have

‖af‖2 ≤ C‖f‖2.
Then a ∈ L∞ and ‖a‖∞ ≤ C.

(ii) Let a ∈ L∞(T). Suppose that for some C > 0 and for all f ∈ H∞+ , we have

‖af‖2 ≥ C‖f‖2.
Then ess infT|a| ≥ C.

Proof. (i) This is essentially the same argument as in the second proof of Theo-
rem 3.2. We have

|(akw, kw)| ≤ ‖akw‖2‖kw‖2 ≤ C‖kw‖22,
which can be rewritten as the estimate |ã(w)| ≤ C, w ∈ D, for the harmonic
extension of a. Then the claim follows by Lemma 3.4.

(ii) From the hypothesis we get

‖afzn‖2 ≥ ‖fzn‖2, n ≥ 0.

Thus, we obtain the estimate

‖ag‖2 ≥ C‖g‖2
for any trigonometric polynomial g. Now the result follows by Exercise 2.2. �

Proof of Theorem 3.6. (1) Let λ /∈ clos(ã(D)); let us prove that λ /∈ σ(T (a)). The
general case can always be reduced to λ = 0. If 0 /∈ clos(ã(D)), then the function
b(z) = 1/a(z) is bounded on D, and so b ∈ H∞. Thus, the operator T (b) is
bounded. By a direct calculation, one checks that

T (a)T (b) = T (b)T (a) = I,
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and so T (b) is the inverse of T (a). So 0 /∈ σ(T (a)), as required.
(2) Let λ /∈ σ(T (a)); let us prove that λ /∈ clos(ã(D)). Again, it suffices to

consider the case λ = 0. If T (a) is invertible, then RanT (a) = H2
+ and in particular

this range includes the function identically equal to 1. Thus, there exists b ∈ H2
+

such that T (a)b = 1, i.e. ab = 1. It remains to prove that b is bounded. For any
f ∈ H∞+ , we have bf ∈ H2

+ and

‖bf‖2 = ‖T (a)−1T (a)bf‖2 ≤ ‖T (a)−1‖‖T (a)bf‖2
= ‖T (a)−1‖‖abf‖2 = ‖T (a)−1‖‖f‖2.

By Lemma 3.7(i), we get that b ∈ H∞+ . �

3.5. The essential spectrum.

Theorem 3.8. Let a ∈ C(T); then

σess(T (a)) = a(T).

We will need an important

Lemma 3.9. Let a ∈ L∞ be a non-zero function. Then either KerT (a) = {0} or
KerT (a)∗ = {0} (or both).

Proof. Suppose f ∈ KerT (a), g ∈ KerT (a). Then P+(af) = 0, i.e. af ∈ H2
−.

Similarly, ag ∈ H2
−. It’s easy to see that g ∈ H2

+, af ∈ H2
− implies afg ∈ H1

−.

Similarly, we obtain agf ∈ H1
−. So for the function h = afg we have h ∈ H1

−,

h ∈ H1
−, so h ≡ 0. Since a 6≡ 0, it follows that the product fg vanishes on a set of

positive measure.
Now we use a uniqueness theorem for Hardy classes: if ω ∈ H1

+ and ω = 0 on
a set of positive measure on T, then ω ≡ 0. It follows that fg ≡ 0, and so either
f ≡ 0 or g ≡ 0 (or both). �

Lecture 3:

Lemma 3.10. For any a ∈ L∞, we have the inclusion

R(a) ⊂ σess(T (a)).

Proof. Suppose λ /∈ σess(T (a)); let us prove that λ /∈ R(a). It suffices to consider
the case λ = 0. The statement 0 /∈ σess(T (a)) means that T (a) is Fredholm, so
RanT (a) is closed. By the previous lemma, we have either KerT (a) = {0} or
KerT (a)∗ = {0}.

Suppose first that KerT (a) = {0}. Then T (a) is a bijection between H2
+ and

the closed subspace RanT (a) in H2
+. By Banach’s inverse mapping theorem, T (a)

has a bounded inverse R on RanT (a), so for any f ∈ H2
+ we have

‖f‖2 = ‖RT (a)f‖2 ≤ ‖R‖‖T (a)f‖2 ≤ ‖R‖‖af‖2.



SPECTRAL THEORY OF HANKEL AND TOEPLITZ OPERATORS 15

By Lemma 3.7(ii), we obtain that ess infT|a| > 0, and so 0 /∈ R(a).
If we have KerT (a)∗ = KerT (a) = {0}, then the above argument can be re-

peated with a in place of a. �

We denote by P− = I − P+ the orthogonal projection onto H2
−(T) in L2(T).

Lemma 3.11. For any a ∈ C(T), the operator P+M(a)P− is compact.

Proof. First consider the case a(z) = zn. For n < 0, we clearly have P+M(zn)P− =
0. For n ≥ 0, we have

P+M(zn)P−z
k = 0, if k < −n,

and so P+M(zn)P− is a finite rank operator. It follows that if a is a polynomial,
then P+M(a)P− is a finite rank operator, so it is compact.

Next, we have the norm estimate

‖P+M(a)P−‖ ≤ ‖M(a)‖ = ‖a‖∞.

Now take a sequence of polynomials aN such that ‖a− aN‖∞ → 0; then we obtain

‖P+M(a)P− − P+M(aN)P−‖ ≤ ‖a− aN‖∞ → 0,

and so P+M(a)P− has been approximated in the operator norm by compact op-
erators. It follows that P+M(a)P− is compact. �

Proof of Theorem 3.8. It is easy to see that for a continuous function a, we have
R(a) = a(T) (see Exercise 3.3). By Lemma 3.10, we obtain the inclusion a(T) ⊂
σess(T (a)). So it remains to prove that

σess(T (a)) ⊂ a(T).

Let λ /∈ a(T); let us prove that λ /∈ σess(T (a)). It suffices to consider λ = 0. Our
assumption means that b = 1/a is continuous on T. Let us prove that T (b) is the
inverse of T (a) modulo compact operators. For f ∈ H2

+ we have

T (a)T (b)f = P+aP+bf = P+a(I−P−)bf = P+abf −P+aP−bf = P+f −P+aP−bf.

This can be written as

T (a)T (b) = I − P+M(a)P−M(b),

and the operator P+M(a)P−M(b) in the r.h.s. is compact by Lemma 3.11. Thus,
T (a)T (b)− I is compact, and similarly one proves that T (b)T (a)− I is compact,
which means that T (a) is Fredholm, and so 0 /∈ σess(T (a)). �
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3.6. The index of a Fredholm operator: background.

Definition. Let M ∈ B(H) be a Fredholm operator. The index of M is defined as

index(M) = dim KerM − dim KerM∗.

Remark. (1) If M is invertible, then indexM = {0}. Indeed, we have KerM =
{0} by definition of invertibility, and KerM∗ = {0} follows from formula (2.1).

(2) Any operator M on a finite-dimensional space has index zero. Indeed, from
(2.1) we have

dim KerM∗ + dim RanM = dimH,
and in the finite dimensional case we also have

dim KerM + dim RanM = dimH.
Subtracting, we get indexM = 0.

(3) For any compact operator K, we have index(I +K) = 0. This is a non-trivial
statement, which we don’t prove here.

Example 3.12. Let S be the shift operator on `2 = `2(Z+):

S : (x0, x1, x2, . . . ) 7→ (0, x0, x1, x2, . . . ).

The adjoint S∗ is the backwards shift:

S∗ : (x0, x1, x2, . . . ) 7→ (x1, x2, x3, . . . ).

It is easy to see that KerS = {0} and dim KerS∗ = 1. Thus, indexS = −1,
indexS∗ = 1. Likewise, KerSn = {0} and dim Ker(S∗)n = n, and so indexSn =
−n, index(S∗)n = n.

The important property of index is its stability:

Proposition 3.13. Let M be a Fredholm operator. Then there exists ε > 0 such
that for all T ∈ B(H) with ‖T‖ < ε and for all compact K, the operator M+T+K
is Fredholm and

index(M + T +K) = index(M).

See e.g. Davies’ book Linear operators and their spectra for the proof.
This statement shows that for any operator M , the function index(M − λ),

defined on the complement (σess(M))c, is constant on all connected components of
this complement.

3.7. The index of Toeplitz operators with continuous symbols. We start
with an example:

Lemma 3.14. For n ∈ Z, we have indexT (zn) = −n.

Proof. For n = 0, T (z0) = I and so clearly the index is zero. Let n > 0; then T (zn)
is unitarily equivalent to Sn in `2, so indexT (zn) = indexSn = −n.

Next, for n > 0 the operator T (z−n) is unitarily equivalent to (S∗)n, and so the
index equals n. �
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Definition. Let a ∈ C(T), a 6= 0 on T. The winding number wind a of a with
respect to the origin is defined as follows. Write

a(eit) = |a(eit)|eiϕ(t), t ∈ [0, 2π],

where ϕ(t) is a continuous function of t ∈ [0, 2π]. Then

wind a =
1

2π
(ϕ(2π)− ϕ(0)).

Theorem 3.15. Let a ∈ C(T); then for any λ /∈ a(T),

index(T (a)− λ) = −wind(a− λ).

Proof. Set λ = 0 for simplicity. Let n = wind a; since a does not vanish on T,
the curve {a(eiθ)}2πθ=0 is homotopic to the curve {einθ}2πθ=0. The homotopy can be
effected through a family {aτ}1τ=0 of continuous curves which do not cross the
origin. Thus, the family of Toeplitz operators {T (aτ )}1τ=0 is continuous (in the
operator norm) and each operator in the family is Fredholm. Thus, indexT (aτ )
depends continuously on τ ∈ [0, 1]; since it is an integer-valued function, the index
is constant along this family, hence

indexT (a) = indexT (zn) = −n,
as required. �

3.8. Exercises.

Exercise 3.1. Arguing by contradiction, prove Lemma 3.3.

Exercise 3.2. Prove Lemma 3.4. Argue as follows. By Exercise 1.3, we have the
convergence ‖a − ar‖1 → 0. Now suppose the claim is false; then there exists a
set E ⊂ T of a positive measure and a δ > 0 such that |a| > C + δ on E. Then
|a− ar| > δ on E. Use this to get a contradiction.

Exercise 3.3. (i) Prove that for a ∈ C(T), one has R(a) = a(T). (ii) Prove that
for H∞(T), one has clos ã(D) = R(ã).

Exercise 3.4. Let a ∈ C(T). Prove that a(T) ⊂ σess(T (a)) by constructing a
Weyl sequence for any λ ∈ a(T). Use the normalised function kw, where w = rne

iθ,
rn → 1, converges to a point eiθ with a(eiθ) = λ.

4. Toeplitz operators on Bergman space

4.1. Measures as symbols. For a ∈ L∞(D), we have the trivial norm estimate

‖T (a)‖ ≤ ‖a‖∞.
In contrast to the Hardy-Toeplitz operators, we will soon see that this estimate is
very far from being optimal. Indeed, we will see that there are bounded Toeplitz
operators on A2 with symbols that are not only unbounded, but that are measures
rather than functions. Let us introduce some notation required for this case.
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Let µ be a finite complex valued measure on D, i.e. µ = µ1 − µ2 + iµ3 − iµ4,
where µj are finite non-negative measures. Consider the sesquilinear (i.e. linear in
the first variable and conjugate-linear in the second variable) form

t(f, g) =

∫
D
f(z)g(z)dµ(z)

on all analytic polynomials f , g. If t satisfies the bound

|t(f, g)| ≤ C‖f‖‖g‖,
where ‖·‖ = ‖·‖A2 , then by a general theorem from operator theory (based on the
Riesz representation theorem for a bounded linear functional on a Hilbert space),
there exists a bounded operator T (µ) on A2 such that

(T (µ)f, g) = t(f, g)

for all analytic polynomials f , g. When µ is absolutely continuous, dµ(z) =
a(z)dA(z), we recover the old definition of the Toeplitz operator T (a).

4.2. Uniqueness of the symbol.

Theorem 4.1. Let µ1, µ2 be two signed measures in D such that T (µ1), T (µ2) are
bounded. If T (µ1) = T (µ2), then µ1 = µ2 a.e. on D.

Proof. It suffices to prove that T (µ) = 0 implies µ = 0. We will prove that∫
D
F (z)dµ(z) = 0

for any function F continuous on clos(D); this will imply µ = 0. It suffices to check
the last relation for all polynomials F = F (x, y), z = x+ iy. Consider a monomial:∫

D
xnymdµ(z) =

∫
D

(
z + z

2

)n(
z − z

2i

)m
dµ(z). (4.1)

Expanding the r.h.s., we can rewrite this as a linear combination of terms of the
type ∫

D
zkz`dµ(z) = (T (µ)zk, z`) = 0

by assumption. Thus, (4.1) vanishes for all n, m, and we obtain the required
statement. �

In fact, a much stronger statement is true:

Proposition 4.2. Let µ be a signed measure on D such that T (µ) is a finite rank
operator. Then µ is a finite linear combination of point masses on D.

The proof of this is very non-trivial; see the paper Finite rank Toeplitz operators
on the Bergman space by D.Luecking in Proc. Amer. Math. Soc. 136 (2008), no.
5, 1717–1723.
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4.3. Boundedness: example. In order to show that the trivial norm bound
‖T (a)‖ ≤ ‖a‖∞ is far from being sharp, let us consider an example.

Let ν be a finite measure on the interval [0, 1] such that supp ν ⊂ [0, a] with
some a < 1. Set

dµ(z) = dν(r)dθ, z = reiθ;

i.e. µ is a rotationally symmetric measure. It is straightforward to see that
(T (µ)zn, zm) = 0 for n 6= m, and so the operator T (µ) is diagonal in the standard
basis {(n + 1)1/2zn}n≥0 in A2. It follows that T (µ) is unitarily equivalent to the
operator of multiplication by the sequence

rn = (n+ 1)(T (µ)zn, zn) = 2π(n+ 1)

∫ a

0

r2ndν(r).

By our assumption on the support of ν, we have

rn ≤ 2π(n+ 1)anν([0, a])→ 0,

as n→∞, and so the operator T (µ) is compact.
This example shows that the symbol may be very far from a bounded function,

yet T (µ) will be bounded. The crucial condition that ensures boundedness in this
example is that the symbol vanishes near the boundary of the disk.

This example also shows that, in contrast to the Hardy-Toeplitz case, there are
many non-trivial compact Bergman-Toeplitz operators.

4.4. Berezin transform. Recall that the reproducing kernel on Bergman space
A2 is given by kw(z) = (1− zw)−2 (see Section 1.4). By definition,

f(w) = (f, kw), w ∈ D
for any f ∈ A2. We will need the formula for the norm of kw:

‖kw‖2 = (kw, kw) = kw(w) = (1− |w|2)−2, w ∈ D.

Definition. Let µ be a finite measure on D. The Berezin transform of µ is defined
by

Bµ(w) =
(T (µ)kw, kw)

‖kw‖2
=

∫
D

(1− |w|2)2

|1− zw|4
dµ(z), w ∈ D.

Similarly, for a ∈ L1(D), the Berezin transform of a is defined by

Ba(w) =
(T (a)kw, kw)

‖kw‖2
=

∫
D

(1− |w|2)2

|1− zw|4
a(z)dA(z), w ∈ D.

The Berezin transform contains a lot of information about the properties of the
corresponding Toeplitz operator. However, extracting this information turns out
to be a very subtle problem.

We will need the following simple

Lemma 4.3. Let h be a harmonic function in L2(D); then Bh(w) = h(w) for all
w ∈ D.



20 ALEXANDER PUSHNITSKI

Proof. A function h in L2(D) is harmonic iff it can be represented as

h(z) = h0 +
∑
n≥1

hnz
n +

∑
n≥1

h−nz
n

with
∑

n∈Z(n + 1)|hn|2 < ∞. Clearly, we can write h = u + v with u, v ∈ A2. We
have

(ukw, kw) = u(w)kw(w) = u(w)(1− |w|2)−2

and similarly

(vkw, kw) = (vkw, kw) = v(w)(1− |w|2)−2.
Combining these identities, we obtain

(hkw, kw) = h(z)(1− |w|2)−2,
which is equivalent to Bh(w) = h(w). �

4.5. The norm. As discussed above, the trivial norm estimate

‖T (a)‖ ≤ ‖a‖∞
in general is not sharp. Some estimates for the norm are known, but it seems that
the precise expression for the norm of a Bergman-Toeplitz operator is not available
even for continuous symbols. We will treat only a very special case when the above
trivial estimate turns out to be sharp.

Theorem 4.4. Let a be harmonic in D and continuous in clos(D). Then

‖T (a)‖ = ‖a‖∞.

Proof. For any w ∈ D we have

|(T (a)kw, kw)| ≤ ‖T (a)‖‖kw‖2,
which can be rewritten as the estimate for the Berezin transform of a:

|Ba(w)| ≤ ‖T (a)‖, w ∈ D.
By Lemma 4.3, we have Ba = a and therefore we obtain

‖a‖∞ = max
|w|≤1
|a(w)| ≤ ‖T (a)‖,

which proves the claim. �

Lecture 4:

Of course, the same argument shows the bound

sup
D
|Ba(w)| ≤ ‖T (a)‖

for all symbols a, but it is not easy to extract information about a from this bound,
because the Berezin transform involves some averaging.
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4.6. Compactness. First we give a generalization of the example in Section 4.3.

Theorem 4.5. Let µ be a finite measure on D supported in the disk Da = {z :
|z| < a} with some a < 1. Then T (µ) is compact.

We need a classical fact about integral operators with continuous kernels, which
we state for L2(D).

Lemma 4.6. Let K be an integral operator in L2(D) with an integral kernel K =
K(z, z′) that is continuous in z, z′ inside the closed unit disc clos(D). Then K is
compact and

‖K‖ ≤ sup
D×D
|K(z, z′)|.

Proof. The norm bound is straightforward:∣∣∣∣∫
D

∫
D
K(z, z′)f(z)g(z′)dA(z)dA(z′)

∣∣∣∣
≤ sup

D×D
|K(z, z′)|

∫
D
|f(z)|dA(z)

∫
D
|g(z′)|dA(z′) ≤ sup

D×D
|K(z, z′)|‖f‖‖g‖.

If K(z, z′) is a polynomial, then K is a finite rank operator. By the Weierstrass
approximation theorem, we can approximate the kernel K(z, z′) by polynomials
uniformly in D × D. This yields an approximation of K in the operator norm by
finite rank operators. Thus, K is compact. �

Proof of Theorem 4.5. Consider the quadratic form of T (µ):

(T (µ)f, g) =

∫
D
f(z)g(z)dµ(z)

=

∫
D
(f, kz)(g, kz)dµ(z) =

∫
D

∫
D
K(w,w′)f(w)g(w′)dA(w)dA(w′),

where

K(w,w′) =

∫
D
kz(w)kz(w

′)dµ(z).

Let K be the integral operator in L2(D) with the integral kernel K(w,w′). Ele-
mentary analysis shows that K(w,w′) is continuous in w, w′, and so by Lemma
the operator K is compact. We have

T (µ) = Π+KΠ∗+,

where Π+ : L2(D)→ A2 is the Bergman projection. Thus, T (µ) is compact. �

The vanishing of the symbol at the boundary of the unit disk is key to compact-
ness. In order to demonstrate this, let us consider a simple class of symbols.

Theorem 4.7. Let a be a continuous function on the closed unit disk. Then T (a)
is compact iff a|T = 0.
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We need a simple

Lemma 4.8. Let a be a continuous function on the closed unit disk. Then for any
z ∈ T, we have

a(z) = lim
r→1−0

Ba(rz).

The proof is outlined in the exercises.

Proof of Theorem 4.7. (1) Suppose that a|T = 0. Then we can find a sequence of
functions an, vanishing for |z| ≥ 1 − 1

n
and such that ‖a − an‖∞ → 0 as n → ∞.

For each n, the operator T (an) is compact by Theorem 4.5. We also have the norm
convergence

‖T (a)− T (an)‖∞ ≤ ‖a− an‖∞ → 0

as n→∞. Thus, T (a) is compact.
(2) Suppose that T (a) is compact. Consider the family of elements (1−|w|2)kw ∈

A2, parameterised by w ∈ D. These elements have norm one in A2. As |w| → 1,
this family converges weakly to zero. Indeed, for any polynomial f , we have

(1− |w|2)(f, kw) = (1− |w|2)f(w)→ 0

as |w| → 1. Since T (a) is compact, it follows that

(1− |w|2)2(T (a)kw, kw) = Ba(w)→ 0

as |w| → 1. Now the result follows from the previous Lemma. �

4.7. Exercises.

Exercise 4.1. Prove Lemma 4.8. Proceed as follows. For z ∈ T, consider

Ba(rz) =

∫
D
Kr(z, w)a(w)dA(w), Kr(z, w) =

(1− r2)2

|1− rwz|4
.

Check that the kernel Kr satisfies the following properties:
(i) Kr(z, w) ≥ 0;
(ii)

∫
DKr(z, w)dA(w) = 1;

(iii) sup{Kr(z, w) : |w − z| > δ} → 0 as r → 0 for any δ > 0.
Now proceed as in Exercise 1.2.

Exercise 4.2. Let a be continuous in the closed unit disk. Prove that a(T) ⊂
σess(T (a)) by constructing a Weyl sequence for every point λ ∈ a(T).

5. Hankel operators on Hardy space

5.1. Non-uniqueness of the symbol. Recall that the Hankel operator H(a)
on the Hardy space H2

+ is defined in Section 1.8. The “matrix” of H(a) in the
standard basis {zn}∞n=0 is {â(n + m)}∞n,m=0. Since this involves only the Fourier
coefficients â(k) with k ≥ 0, we see that

H(a) = 0⇔ a ∈ H∞− .
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In particular, the symbol of a Hankel operator is not unique, but is defined up to
an additive term from H∞− .

Remark. Some authors require that the symbol a is analytic, i.e. â(k) = 0 for
k < 0; of course, this condition uniquely specifies the symbol. We will not follow
this approach.

5.2. The norm. As already discussed, we have the estimate

‖H(a)‖ ≤ ‖a‖∞.
From the previous discussion it follows that

‖H(a)‖ ≤ ‖a− ϕ‖∞ ∀ϕ ∈ H∞− ,
which implies that

‖H(a)‖ ≤ distL∞(a,H∞− ).

It turns out that this inequality is actually an identity.

Theorem 5.1 (Z.Nehari 1957). Let a ∈ L∞(T). Then there exists a function
b ∈ L∞(T) such that b− a ∈ H∞− and

‖H(a)‖ = ‖b‖∞.

Corollary 5.2. If a ∈ L∞, then

‖H(a)‖ = distL∞(a,H∞− ). (5.1)

Proof. We only need to prove the “≥” inequality. Let b be as in the Theorem; then
a = b+ ϕ with ϕ ∈ H∞− , so

distL∞(a,H∞− ) ≤ ‖a− ϕ‖∞ = ‖b‖∞ = ‖H(a)‖.
�

In order to prove Nehari’s theorem, we will use the following fact from the theory
of Hardy spaces:

Proposition 5.3. Let h ∈ H1(T); then there exist f, g ∈ H2(T) such that ‖h‖1 =
‖f‖2‖g‖2.

Proof of Nehari’s theorem. Consider the anti-linear functional L, defined on H1

by

L(h) =

∫ π

−π
a(eiθ)h(eiθ)

dθ

2π
.

Fix h ∈ H1; by Proposition above, we can write h = fg with f, g ∈ H2. Denote
f1(e

iθ) = f(e−iθ); then f1 ∈ H2 and ‖f1‖2 = ‖f‖2. We have

h(eiθ) = g(eiθ)f(eiθ) = g(eiθ)f1(e
−iθ),

and so

L(h) =

∫ π

−π
a(eiθ)f1(e

−iθ)g(eiθ)
dθ

2π
= (H(a)f1, g).
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It follows that

|L(h)| ≤ ‖H(a)‖‖f1‖2‖g‖2 = ‖H(a)‖‖h‖1,
and so L is a bounded linear functional on H1 with the norm ≤ ‖H(a)‖. Since
H1 ⊂ L1, by the Hahn-Banach theorem, L can be extended to a bounded linear
functional on L1 with the same norm. As (L1)∗ ' L∞, we obtain that there exists
b ∈ L∞ with ‖b‖∞ ≤ ‖H(a)‖ such that

L(h) =

∫ π

−π
b(eiθ)h(eiθ)

dθ

2π
.

Repeating the above argument, we see thatH(a) = H(b), and therefore b−a ∈ H∞− .
Thus, we also have ‖H(a)‖ ≤ ‖b‖∞. �

In fact, Nehari’s theorem can be stated without the a priori assumption that
a ∈ L∞; all that is required is the boundedness of the operator H(a). This can be
done more cleanly in terms of the “matrix representation” for H(a).

Let {αj}∞j=0 be a sequence of complex numbers. We denote by Γ(α) the operator

in `2(Z+), given by the “infinite matrix” {αj+k}j,k≥0. More precisely, we start with
a sesquilinear form

Γ(x, y) =
∑
j,k≥0

αj+kxjyk

on the set of all finite sequences x, y. If the form satisfies the bound

|Γ(x, y)| ≤ A‖x‖`2‖y‖`2 ,
then there exists a bounded operator Γ(α) in `2 such that

Γ(x, y) = (Γ(α)x, y)

for all finite sequences x, y, and the smallest possible constant A in the estimate
above coincides with the operator norm of Γ(α).

Theorem 5.4 (Nehari, version 2). A Hankel matrix Γ(α) in `2(Z+) is bounded iff
there exists a function a ∈ L∞(T) such that

â(k) = αk, k ≥ 0.

In this case

‖Γ(α)‖ = inf{‖a‖∞ : â(k) = αk, k ≥ 0}

For the proof, see, e.g. the book Hankel operators and their applications by
V.Peller.

Example 5.5. Consider the sequence αn = 1/(n+1). The corresponding operator
Γ(α) is called the Hilbert matrix. The symbol

b(z) =
∞∑
n=0

1

n+ 1
zn
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is not bounded on T, as can be seen by considering z → 1. However, one can
choose a bounded symbol for the Hilbert matrix. Take

a(eiθ) = ie−iθ(π − θ), θ ∈ [0, 2π).

Then (exercise)

â(n) = 1/(n+ 1), n ≥ 0.

It follows that the Hilbert matrix is bounded and

‖Γ(α)‖ ≤ π.

In fact, the norm of the Hilbert matrix exactly equals to π. It is known that the
Hilbert matrix is not compact, and its spectrum coincides with the interval [0, π].

Remark 5.6. The previous example illustrates the following point: The operator
P+ is not bounded in L∞ (although it is bounded in Lp for all 1 < p <∞). Indeed,
for a function a ∈ L∞ as in the example, the function b = P+a is unbounded.

5.3. Finite rank Hankel operators. One of the oldest theorems in the theory
of Hankel operators is

Theorem 5.7 (L.Kronecker 1881). Let a ∈ L∞; then the Hankel operator H(a)
has a finite rank if and only if P+a is a rational function.

Remark. (1) A rational function is a function of the form p/q, where p and q
are polynomials in z.

(2) Kronecker’s theorem also says that the rank of H(a) equals to
max{deg p, deg q}, although we will not prove this.

(3) Since P+a = p/q is analytic in D, it can have poles only outside the closed
unit disk.

(4) As in Nehari’s theorem, it is not necessary to assume a priori that a ∈ L∞.
Another way of stating Kronecker’s theorem is to say that if the operator
Γ(α) = {αn+m}n,m≥0 is bounded in `2 and has a finite rank, then the
function ∑

n≥0

αnz
n

is rational.

Lecture 5:

Proof of Kronecker’s theorem. 1. Let us prove that if a = p/q is a rational function
with poles outside the closed unit disk, then H(a) is a bounded finite rank operator.
Using a partial fraction decomposition, we can represent a as a finite sum

a(z) = a0(z) +
∑
k,m

ck,m
(z − zk)m

,
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where a0 is a polynomial, |zk| > 1, m ∈ N, and ck,m are complex numbers. It is
clear that H(a0) is a finite rank operator. Thus, it suffices to prove that for each
symbol of the form

bζ(z) = (z − ζ)−m, m ∈ N, |ζ| > 1,

the operator H(bζ) has a finite rank.
Consider first the case m = 1. Then

bζ(z) = (z − ζ)−1 = −ζ−1(1− zζ−1)−1 = −
∞∑
n=0

ζ−n−1zn,

and so the matrix elements of the Hankel operator in `2(Z+) corresponding to
H(bζ) are

(H(bζ)z
n, zk) = −ζ−1ζ−nζ−k.

Denoting this matrix by Γζ , we see that it can be represented as a rank one operator
in `2(Z+), viz.

Γζ = −ζ−1(·, ζ−n)ζ−n. (5.2)

Next, we have

H((z − ζ)−m−1) =
1

m!

(
d

dζ

)m
H((z − ζ)−1).

It follows that the matrix of H((z − ζ)−m−1) is given by

1

m!

(
d

dζ

)m
Γζ .

Differentiating (5.2), we see that this is a finite rank operator.
2. Let {αj}j≥0 be a sequence of complex numbers and let Γ(α) be the corre-

sponding Hankel operator in `2(Z+). We denote by a(z) the formal power series

a(z) =
∑
j≥0

αjz
j.

Assume that Γ(α) is bounded and has a finite rank. The boundedness of Γ(α)
immediately implies that the sequence {αj} is bounded, and therefore the series
in the definition of a(z) converges for |z| < 1. If rank Γ(α) = n, then the first n
rows of the matrix Γ(α) are linearly dependent. This can be written as follows:

c0a(z) + c1P+(za(z)) + c2P+(z2a(z)) + · · ·+ cnP+(zna(z)) = 0, z ∈ T, (5.3)

where c0, . . . , cn are some complex numbers not simultaneously equal zero. Notice
that for any k, we have

zkP+(zka(z)) = a(z) + pk(z),

where pk(z) is a polynomial of degree ≤ k. Now let us multiply (5.3) by zn:
n∑
k=0

ckz
nP+(zka(z)) = 0.
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This can be rewritten as
n∑
k=0

ckz
n−ka(z) = p(z),

where p is a polynomial of degree ≤ n. Thus, denoting

q(z) =
n∑
k=0

ckz
n−k,

we obtain a(z) = p(z)/q(z). Finally, since a(z) is analytic in D, the rational func-
tion p/q may not have poles in D. A separate argument (see Exercises) shows that
p/q may not have poles on the unit circle T either. Thus, a = p/q is a bounded
analytic function in D, and in particular P+a = a. �

5.4. Compactness. We start with a simple statement

Theorem 5.8. Let a ∈ C(T); then H(a) is compact.

Essentially, this is the same statement as Lemma 3.11.

Proof. There exists a sequence of polynomials an such that ‖a − an‖∞ → 0 as
n→∞. For each polynomial an, the operator H(an) has a finite rank. Thus, H(a)
can be approximated by finite rank operators in the operator norm, hence H(a) is
compact. �

A deep and non-trivial fact is the converse statement:

Theorem 5.9 (P.Hartman, 1958). Let a ∈ L∞; if H(a) is compact, then there
exists b ∈ C(T) such that H(a) = H(b).

We need two lemmas: a function theoretic one and an operator theoretic one.

Lemma 5.10. Let

C +H∞− = {p+ g : p ∈ C(T), g ∈ H∞− (T)}.
Then C +H∞− is closed in L∞(T).

This lemma is a little technical and we postpone its proof until the end of this
section.

Lemma 5.11. Let Sn be a sequence of bounded operators such that Sn → 0 strongly
as n→∞. Then for any compact operator K, ‖SnK‖ → 0 as n→∞.

The proof is outlined in the exercises.

Proof of Hartman’s theorem. Let S be the operator of multiplication by z in H2
+,

and let S∗ be its adjoint. It is easy to see that (S∗)n → 0 strongly in H2. It follows
that

‖H(a)Sn‖ = ‖(S∗)nH(a)∗‖ → 0, n→∞ (5.4)
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by the lemma. Next, we have

H(a)Snf = P+(aJ(znf)) = P+(aznJf)

and so H(a)Sn = H(azn). Using (5.1), it follows that

‖H(a)Sn‖ = ‖H(zna)‖ = distL∞(zna,H∞− ) = distL∞(a, znH∞− ).

Combining this with (5.4), we get

distL∞(a, znH∞− )→ 0, n→∞.
It is easy to see that znH∞− ⊂ C +H∞− , and so

distL∞(a, C +H∞− ) ≤ distL∞(a, znH∞− );

so it follows that
distL∞(a, C +H∞− ) = 0.

Since (by Lemma 5.10) the class C+H∞− is closed, we get that a ∈ C+H∞− . Thus,
a can be represented as a = b + ϕ with b ∈ C and ϕ ∈ H∞− . Then H(a) = H(b),
as required. �

5.5. Proof of Lemma 5.10. First we prove an auxiliary statement. Denote for
brevity D = clos(D).

Lemma 5.12. Let f ∈ C(T). Then

distL∞(f,H∞− ) = distL∞(f,H∞− ∩ C(D)).

Proof. Clearly, it suffices to prove that

distL∞(f,H∞− ∩ C(D)) ≤ distL∞(f,H∞− ).

Given g ∈ L∞(T), we denote by g̃ the harmonic extension of g into D and set
g(r)(z) = g̃(rz), z ∈ T. Recall that (see Exercise 1.1)

‖g(r)‖∞ ≤ ‖g‖∞, r < 1, (5.5)

and
‖g(r) − g‖∞ → 0, r → 1, ∀g ∈ C(T). (5.6)

Let f ∈ C(T). Denote d = dist(f,H∞− ); let us prove that

distL∞(f,H∞− ∩ C(D)) ≤ d+ ε (5.7)

for any given ε > 0. There exists h ∈ H∞− such that ‖f − h‖∞ ≤ d+ ε/2. We have

‖f − h(r)‖∞ = ‖f − f (r) + f (r) − h(r)‖∞ ≤ ‖f − f (r)‖∞ + ‖f (r) − h(r)‖∞.
As r → 1, we have ‖f − f (r)‖∞ → 0 by (5.6). Thus, we can choose r sufficiently
close to 1 so that ‖f − f (r)‖∞ < ε/2. On the other hand, by (5.5) we have

‖f (r) − h(r)‖∞ ≤ ‖f − h‖∞ ≤ d+ ε/2.

Combining this, we obtain (5.7). �
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Proof of Lemma 5.10. Let {an}∞n=1 be a sequence of elements of C +H∞− ; suppose
that ‖a− an‖∞ → 0 with some a ∈ L∞. We need to prove that a ∈ C + H∞− . We
have an = pn + gn with some pn ∈ C, gn ∈ H∞− . By selecting a subsequence, we
may assume that the convergence an → a is sufficiently fast so that

‖an+1 − an‖∞ ≤ 2−n.

This means that

‖(pn+1 − pn) + (gn+1 − gn)‖∞ ≤ 2−n. (5.8)

Let us prove that we can replace the sequence gn ∈ H∞− here by a sequence of

functions from H∞− ∩C(D); we will have to pay by slightly increasing the constant

in the right hand side. That is, let us prove that for some sequence qn ∈ H∞− ∩C(D),
we have

‖(pn+1 − pn) + (qn+1 − qn)‖∞ ≤ 2−n+1. (5.9)

Indeed, from (5.8) we have

distL∞(pn+1 − pn, H∞− ) ≤ 2−n.

By Lemma 5.12, it follows that

distL∞(pn+1 − pn, H∞− ∩ C(D)) ≤ 2−n,

and therefore there exist Qn ∈ H∞− ∩ C(D) such that

‖(pn+1 − pn)−Qn‖∞ ≤ 2−n+1.

Write qn =
∑n−1

k=1 Qk; then Qn = qn+1 − qn and so we obtain (5.9).
From (5.9) we see that the sequence pn + qn converges in L∞; denote its limit

by b. Since pn, qn ∈ C, we have b ∈ C.
Consider the quotient space L∞/H∞− , and let π : L∞ → L∞/H∞− be the natural

projection. Clearly, π is a continuous map. As pn + gn → a, we get π(pn)→ π(a)
in L∞/H∞− . Since qn ∈ H∞− we have π(qn) = 0 and so pn + qn → b implies that
π(pn)→ π(b) in L∞/H∞− . Thus, π(a) = π(b), i.e. a = b+ h with some h ∈ H∞− , as
required. �

5.6. Exercises.

Exercise 5.1. Prove Lemma 5.11; proceed as follows. First prove the statement
for the case when K is a rank one operator. Next, repeat for the case when K
is a finite rank operator. Finally, complete the proof using the facts that (i) any
strongly convergent sequence of operators is uniformly bounded; and (ii) if K is
compact, then for any ε > 0 it can be represented as K = K1 + K2, where K1 is
a finite rank operator and ‖K2‖ ≤ ε.

Exercise 5.2. Give an example showing that under the hypothesis of Lemma 5.11,
the statement ‖KSn‖ → 0 may be false (the order is important here!).
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Exercise 5.3. Prove that in the second part of the proof of Kronecker’s theorem,
the function a(z) is in H∞. Proceed as follows. (i) Prove that if Γ(α) is a bounded
operator of rank one, then

∑
j≥0|αj| <∞. (ii) Extend this to the case when Γ(α)

is a bounded operator of finite rank. (iii) Conclude that a(z) is bounded uniformly
in D.


