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Abstract. These are (slightly expanded) lecture notes from a mini-course
given at CRM Barcelona during 22–25 October 2019. The content is based on
the author’s joint work with Patrick Gérard.

1. Introduction

1.1. Motivation. The motivation for this topic is the work of Patrick Gérard
and Sandrine Grellier in 2010–2014. In [3], they have introduced the cubic Szegő
equation

i
∂u

∂t
= P (|u|2u), u = u(z; t), z ∈ T, t ∈ R,

as a model for totally non-dispersive evolution equations. Here for each t ∈ R, the
function u(·, t) is an element of the Hardy class H2 = H2(T) and P is the the
Szegő projection, i.e. the orthogonal projection in L2(T) onto the Hardy class H2

(precise definitions will be given below).
It turned out [3, 4] that this equation is completely integrable and possesses a

Lax pair. Indeed, a function u is a solution to the cubic Szegő equation if and only
if

d

dt
Hu = [Bu, Hu],

whereHu is a Hankel operator with the symbol u (see Section 1.7 for the definition),
and Bu is a certain auxiliarly skew-selfadjoint operator. In particular, it follows
that if the operator Hu is compact, then its singular values are integrals of motion
for the cubic Szegő equation.

In order to solve the Cauchy problem for the cubic Szegő equation, one must
therefore develop a version of direct and inverse spectral theory for Hu. The spec-
tral data in this problem involves the sequence of singular values of Hu and the
sequence of inner functions, parameterising the Schmidt subspaces of Hu (i.e. the
eigenspaces of |Hu|). This was achieved in [5, 6] for u ∈ VMOA(T), which corre-
sponds to compact Hankel operators Hu.
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1.2. Summary. The important ingredient of the work by Gérard-Grellier was
the description of the structure of the Schmidt subspaces of Hu. This description
was later made both more precise and more general in [7, 9]. The purpose of this
mini-course is to describe this structure, its consequences and some related ideas.

To put it briefly, the aim of this mini-course is to state precisely and to prove

Main theorem. Every Schmidt subspace of a Hankel operator has the
form pKθ, where θ is an inner function, Kθ is a model space and p is an
isometric multiplier on Kθ.

All the underlined terms will be defined and discussed; some ideas of the proof
will be given, and some consequences will be mentioned.

1.3. Schmidt subspaces. Let A be a bounded operator in a Hilbert space. We
will say that s > 0 is a singular value of A, if the Schmidt subspace

EA(s) := Ker(A∗A− s2I)

is non-trivial: EA(s) 6= {0}. In other words, this means that there exists a non-
zero pair (ξ, η) (called the Schmidt pair) of elements in our Hilbert space such that
Aξ = sη and A∗η = sξ.

It is straightforward to see that A maps the Schmidt subspace EA(s) onto
EA∗(s). Suppose for simplicity of discussion that A is compact. Observe that our
Hilbert space can be represented as

KerA⊕
(⊕

s

EA(s)
)
,

where the orthogonal sum is taken over all singular values of A.
Observe that if we know all singular values of A, all Schmidt subspaces EA(s)

and we know how A acts from EA(s) to EA∗(s), then we can reconstruct the
operator A from this information.

1.4. Hankel and Toeplitz matrices. The most elementary way of approaching
the definition of Hankel and Toeplitz operators is to consider them as infinite
matrices in `2(Z+), Z+ = {0, 1, 2, . . . }, with the following structure:

Γ = {a(n+m)}∞n,m=0, T = {a(n−m)}∞n,m=0,

where {a(n)}∞n=−∞ is a sequence of complex numbers. Our main focus will be on
Hankel operators.

We will discuss the boundedness and other analytic properties very soon, but at
present let us focus on the following “algebraic” aspect. Observe that the matrix
Γ is symmetric, i.e. Γ> = Γ. It follows that

CΓ = Γ∗C,
where C is the (anti-linear) operator of complex conjugation in `2:

C{xn}∞n=0 = {xn}∞n=0.
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From here we easily see that C maps EΓ∗(s) onto EΓ(s) and vice versa. Thus,
the anti-linear operator ΓC maps the subspace EΓ∗(s) onto itself; in fact, it is an
anti-linear involution on this subspace. Observe also that

(ΓC)2 = ΓCΓC = ΓΓ∗,

and so

EΓ∗(s) = Ker((ΓC)2 − s2I).

Thus, it will be convenient to deal with the anti-linear operator ΓC; our aim will
be to describe the Schmidt subspaces Ker((ΓC)2 − s2I) and the action of ΓC on
these subspaces.

1.5. Hardy space. We use the standard notation for the unit circle and the unit
disk in C:

T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}.
We recall basic definitions related to the Hardy space H2 in the unit disk. This
space consists of all functions in L2(T) of the form

f(z) =
∞∑
n=0

f̂(n)zn, |z| = 1, (1.1)

where ‖f‖2 =
∑∞

n=0 |f̂(n)|
2
<∞. We will denote by 〈f, g〉 the inner product of f

and g in H2, and we will denote by 1 the function in H2 which is identically equal
to 1.

The Szegő projection P is the orthogonal projection in L2(T) onto H2, given by

P :
∞∑

n=−∞

f̂(n)zn 7→
∞∑
n=0

f̂(n)zn.

If f ∈ H2, sometimes it is convenient to consider it not as a function on the unit
circle T, but as a holomorphic function in the open unit disk D, given by the same
formula (1.1). In this case, the function on the unit circle can be recovered, for
example, as the radial (in fact, non-tangential) limit

f(eiθ) = lim
r→1−

f(reiθ), a.e. θ ∈ (0, 2π).

We refer e.g. to [12, 14] for the theory of boundary behaviour of holomorphic
functions in the unit disk.

The shift operator S in H2 is defined by Sf(z) = zf(z), and its adjoint S∗ in
H2 is given by

S∗f(z) =
f(z)− f(0)

z
.

We will also need the Hardy space H∞, which can be defined as H2 ∩ L∞ (or as
the space of all bounded analytic functions in the unit disk).
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1.6. Toeplitz operators in Hardy space. Let a ∈ L∞(T); consider the operator
Ta in H2, given by

Taf = P (a · f), f ∈ H2.

The function a is called the symbol of Tϕ. It is straightforward to see that Ta is
bounded and that the matrix of Ta in the standard basis {zn}∞n=0 is {â(n−m)}∞n,m=0,
i.e. it is a Toeplitz matrix.

Conversely, it is not difficult to prove that any bounded Toeplitz matrix

T = {t(n−m)}∞n,m=0 on `2(Z+)

is unitarily equivalent to Ta with some a ∈ L∞ (we will say that T is realised as
Ta in the Hardy space).

Toeplitz operators satisfy the commutation relation

S∗TaS = Ta;

the proof of this is a simple exercise. In fact, if a bounded operator Ta satisfies this
commutation relation, then it is necessarily a Toeplitz operator (this is called the
Brown-Halmos theorem).

We refer, e.g. to [13] for background information on Toeplitz operators.

1.7. Hankel operators in Hardy space. Consider the symbol u ∈ H∞ (this is
the class of all bounded analytic functions on the open unit disk). We define the
anti-linear Hankel operator in H2 by

Huf = P (u · f), f ∈ H2.

It is straightforward to see that the matrix of Hu in the standard basis is Γ =
{û(n + m)}∞n,m=0. Remembering the complex conjugation over f , we see that Hu

is unitarily equivalent to the operator ΓC in `2.
We note that instead of u ∈ H∞, we could have taken u ∈ L∞. However, Hu

depends only on the analytic part of u, and requiring that u is analytic ensures
that the symbol u is uniquely defined by the operator Hu.

It is an easy exercise to check the commutation relation

S∗Hu = HuS.

In fact, it is not difficult to show that any bounded anti-linear operator that
satisfies this relation, is a Hankel operator.

Although this is not a focus of our mini-course, we briefly mention the following
facts:

(1) Condition u ∈ H∞ is sufficient, but not necessary for the boundedness of
Hu. In fact, Hu is bounded if and only if u ∈ BMOA, i.e. u is an analytic
BMO function; this fact is often called the Nehari-Fefferman theorem. The
class BMOA satisfies

H∞ ⊂ BMOA ⊂ Hp, ∀p <∞.
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In particular, BMOA ⊂ H2, and so the symbol u of a bounded Hankel
operator Hu is in H2. This can also be seen directly, because

Hu1 = P (u1) = u.

(2) Kronecker’s theorem asserts that Hu is a finite rank operator if and only if
u is a rational function with no poles in the closed unit disk.

Example. Let uα(z) = 1
1−αz , where |α| < 1. Recall that uα is the reproducing

kernel of H2, i.e.

〈f, uα〉 = f(α), f ∈ H2.

It is a simple exercise to check that

Huαf = 〈uα, f〉uα,
i.e. Huα is a rank one Hankel operator.

Using this example, it is not difficult to prove one part of Kronecker’s theorem.
If v is a rational function, we can represent it as a sum of elementary fractions uα
and their derivatives. Each of them gives rise to a finite rank Hankel operator.

We refer, e.g. to [13] and [15] for background information on Hankel operators.

2. Inner functions, model spaces and isometric multipliers

2.1. Inner functions. A non-constant function θ ∈ H∞ is called inner, if |θ(z)| =
1 for almost all z in the unit circle.

Example. Let N ∈ N and let {zn}Nn=1 be points in the open unit disk. Define

θ(z) =
N∏
n=1

zn − z
1− znz

for |z| < 1. Then θ is inner; it is a Blaschke product of degree N with zeros {zn}Nn=1.

Example. The previous example can be modified to the case of infinitely many
zeros. The only new aspect is that one has to take care about the convergence of
the infinite product. Let {zn}∞n=1 be points in the open unit disk, satisfying the
condition

∞∑
n=1

(1− |zn|) <∞.

Define

θ(z) =
N∏
n=1

zn
|zn|

zn − z
1− znz

for |z| < 1. (The terms zn/|zn| are inserted in order to make the infinite product
converge.) Then θ is inner; it is an infinite Blaschke product. We define the degree
of θ to be infinity.
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Example. Let µ ≥ 0 be a finite singular measure on the unit circle T; define

θ(z) = exp

(
−
∫ π

−π

eit + z

eit − z
dµ(t)

)
for |z| < 1. Then θ is inner; it is a singular inner function; by definition, the degree
of θ is infinity. For example, if µ is a point mass at 1 with µ({1}) = c > 0, we have

θ(z) = exp

(
c
z + 1

z − 1

)
.

In fact, every inner function can be represented as a product of a Blaschke
product and a singular inner function.

2.2. Model spaces. The following theorem due to A.Beurling (1949) is funda-
mental to much of analysis.

Theorem 2.1. Let M ⊂ H2 be a closed subspace, M 6= {0} and M 6= H2. Suppose
that M is invariant under the shift operator: SM ⊂M . Then there exists an inner
function θ such that

M = θH2 := {θf : f ∈ H2}.
Of course, the converse is also true: every subspace θH2 is invariant for S.
Observing that SM ⊂M if and only if S∗M⊥ ⊂M⊥, we obtain

Corollary 2.2. LetM ⊂ H2 be a closed subspace,M 6= {0} andM 6= H2. Suppose
that M is invariant under the backwards shift operator: S∗M ⊂ M . Then there
exists an inner function θ such that

M = Kθ := H2 ∩ (θH2)⊥.

The space Kθ is called a model space.
Let us rewrite the condition f ∈ Kθ in an equivalent way:
f ⊥ θH2 ⇔ θf ⊥ H2 ⇔ zθf ∈ H2.

Example. Let θ(z) = zN , N ∈ N. Then

KzN = {a0 + · · ·+ aN−1z
N−1 : a0, . . . , aN−1 ∈ C}

is simply the space of all polynomials of degree ≤ N − 1.

Example. Let N ∈ N and let θ be a Blaschke product of degree N with distinct
zeros {zn}Nn=1. It is easy to see that

Kθ = span{uzn}Nn=1, uα(z) =
1

1− αz
.

Indeed, recalling that uα is the reproducing kernel, we see that the orthogonal
complement to span{uzn}Nn=1 is precisely the linear subspace of functions f ∈ H2

that vanish at all points {zn}Nn=1. This subspace coincides with θH2.

Remark. 1. It is easy to see that θ(0) = 0 if and only if 1 ∈ Kθ.
2. It is easy to see that the map f 7→ zθf is an involution on Kθ.
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2.3. Isometric multipliers on model spaces. Let M be a closed subspace in
H2, and let p be an analytic function in the open unit disk. One says that p is an
isometric multiplier on M , if for every f ∈M , we have pf ∈ H2 and

‖pf‖ = ‖f‖.
In this case we will denote

pM = {pf : f ∈M}.
Clearly, pM is a closed subspace in H2.

Remark. Observe that if 1 ∈ M , then (taking f = 1) we have p ∈ M and
‖p‖ = 1.

Exercise. Check that if 1 ∈ M , then p is (up to a unimodular complex factor)
the normalised projection of 1 onto the space pM .

The interest to isometric multipliers on model spaces arose due to the following
result by E.Hayashi from 1986:

Theorem 2.3. [10] Let T be a bounded Toeplitz operator in H2 with a non-trivial
kernel. Then there exists an inner function θ and an isometric multiplier p on Kθ

such that
KerT = pKθ.

D.Sarason has characterised all isometric multipliers on a given space Kθ.

Theorem 2.4. [17] Let θ be an inner function with θ(0) = 0, and let p ∈ H2 be
a function of norm one. Then p is an isometric multiplier on Kθ if and only if it
can be represented as

p(z) =
a(z)

1− θ(z)b(z)
, |z| < 1,

where a, b ∈ H∞ is a pair of functions such that

|a|2 + |b|2 = 1

almost everywhere on the unit circle.

Some ideas of the proof. We will proof only the easy part of the theorem (the “if”
part) in the easy case when |b| ≤ const < 1. Let us write |p|2 on the unit circle.
By a simple algebra, we have

|p|2 =
|a|2

|1− θb|2
=

1− |b|2

|1− θb|2
= 1 +

θb

1− θb
+

θb

1− θb
.

Now let us multiply this by |f |2 and write the result as

|p|2|f |2 = |f |2 +
bf

1− θb
θf +

bf

1− θb
θf. (2.1)
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Consider the second term in the right hand side. By the assumption on b, the term

bf

1− θb

is an element in H2. Further, since f ∈ Kθ, we have zθf ∈ H2, and so θf is an
element in H2 which vanishes at the origin. It follows that

bf

1− θb
θf

is a function in H1 which vanishes at the origin. Thus, its integral over the unit
circle vanishes. The same considerations apply to the last term in the right hand
side of (2.1): its integral over the unit circle vanishes. So, integrating (2.1), we
obtain ∫ π

−π
|p(eit)|2|f(eit)|2 dt =

∫ π

−π
|f(eit)|2 dt,

which means precisely that ‖pf‖ = ‖f‖. �

2.4. Frostman shifts. Here we address the following question. Let M = pKθ,
where p is an isometric multiplier on Kθ. Are the parameters p, θ unique in the
representation M = pKθ?

It is clear that one can multiply both p and θ by unimodular complex numbers
without changing the space pKθ. It turns out that there is another natural family of
transformations on p and θ that leaves the space pKθ invariant. To begin, consider
the example of the previous theorem with both a and b being constants. Changing

notation slightly, we see that for every |α| < 1, the function
√

1− |α|2/(1−αθ) is

an isometric multiplier on Kθ.

Exercise. 1. Check that√
1− |α|2

1− αθ
Kθ ⊂ Kθα , θα =

α− θ
1− αθ

.

2. Check that in fact we have the equality√
1− |α|2

1− αθ
Kθ = Kθα .

Hint: use the fact that (θα)α = θ and√
1− |α|2

1− αθα
=

1− αθ√
1− |α|2

.
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We can rewrite the result of this exercise as follows:

Kθ = gαKθα , gα =
1− αθ√
1− |α|2

,

and gα is the isometric multiplier on Kθα . This transformation is called the Frost-
man shift. From here we see that if p is an isometric multiplier on Kθ, then the
space pKθ can be equivalently written as

pKθ = pgαKθα ,

where pgα is an isometric multiplier on Kθα .
In fact, the converse statement also holds, see [2]. If

pKθ = p̃Kθ̃,

where p is an isometric multiplier on Kθ and p̃ is an isometric multiplier on Kθ̃,
then for some constants |α| < 1, |c1| = 1, |c2| = 1 we have

θ̃ = c1θα, p̃ = c2pgα.

Suppose we have a subspace of the form pKθ. It is often convenient to perform
a Frostman shift with α = θ(0). Then θα(0) = 0 and we write our subspace in an

equivalent form p̃Kθ̃ with θ̃(0) = 0.
Also, θ(0) = 0 is a convenient normalisation which fixes the choices of θ and p

up to unimodular constant factors.

2.5. Nearly invariant subspaces. The following definition was introduced by
D.Hitt in 1988, see [11]. A closed subspace M ⊂ H2 is called nearly S∗-invariant,
if

S∗(M ∩ 1⊥) ⊂M.

In other words, we require that if f ∈M and f(0) = 0, then f(z)/z ∈M .
Observe that if M 6= {0} is nearly S∗-invariant, then M 6⊥ 1. Indeed, if M ⊥ 1

and if f ∈M , then after dividing by z a finite number of times, we must arrive at
a function which does not vanish at the origin, which contradicts the assumption
M ⊥ 1. Because of this simple observation, the condition that M 6⊥ 1 is often
included in the definition of nearly S∗-invariance.

Theorem 2.5 (Hitt, [11]). Every nearly S∗-invariant subspace M is of the form
M = pN , where S∗N ⊂ N and p is an isometric multiplier on N . Thus, we have
two possibilities: (i) M = pKθ, where θ is inner and p is an isometric multiplier
on Kθ; (ii) M = pH2, where p is an inner function.

Some ideas of the proof. 1) Let p be the normalised projection of 1 onto M . For
f ∈M , write

f = c0p+ f1, f1 ⊥ p.

Since both f and p are in M , we also have f1 ∈M . By orthogonality,

‖f‖2 = |c0|2 + ‖f1‖2.
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Further, f1 ⊥ p means f1 ⊥ 1 and so, by the nearly S∗-invariance, we have
S∗f1 = f1/z ∈M . For f1/z we write again

f1/z = c1p+ f2, f2 ⊥ p.

Then we get

‖f1‖2 = |c1|2 + ‖f2‖2

and again S∗f2 ∈M . Continuing recursively, we get

fn/z = cnp+ fn+1, fn+1 ⊥ p,

and

‖fn‖2 = |cn|2 + ‖fn+1‖2.

Linking these equations together gives

f(z) = (c0 + c1z + · · ·+ cnz
n)p(z) + znfn+1(z)

and

‖f‖2 = |c0|2 + · · ·+ |cn|2 + ‖fn+1‖2 ≥ |c0|2 + · · ·+ |cn|2.

Inspecting the Taylor series of f/p at zero, we find that

f(z)/p(z) =
∞∑
n=0

cnz
n

and

‖f/p‖2 =
∞∑
n=0

|cn|2 ≤ ‖f‖2.

So the operator T1/p : M → H2 is a contraction.
2) Consider the set

M0 = {f ∈M : ‖f/p‖ = ‖f‖}.

Exercise. 1. Using the previous step of the proof, prove that M0 is a linear (lin-
earity is non-trivial!) closed subspace of M .

2. Prove that T1/p(M0) is S∗-invariant.

3) Using a separate clever calculation with reproducing kernels, Hitt shows that
actually M0 = M . So now we have T1/pM = N , or M = pN , where p is an
isometric multiplier on N . �
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2.6. Toeplitz kernels. As already mentioned, Toeplitz operators satisfy the key
commutation relation

S∗TaS = Ta. (2.2)

Here we determine the structure of Toeplitz kernels. First we make two remarks:
1) Since I is a Toeplitz operator with the symbol 1, we have

Ker(Ta − λI) = KerTa−λ1.

Thus, describing the structure of Toeplitz kernels is equivalent to describing the
structure of all Toeplitz eigenspaces.

2) A deep theorem by M.Rosenblum [16] says that if Ta is a bounded self-adjoint
Toeplitz operator with a non-constant symbol a, then the spectrum of Ta is purely
absolutely continuous. In particular, Ta has no eigenvalues. This shows that the
study of kernels of Toeplitz operators is a specifically non-selfadjoint problem.

Now let us prove Hayashi’s theorem on the structure of Toeplitz kernels by using
Hitt’s theorem. Let Ta be a bounded Toeplitz operator with KerTa 6= {0}.

1) Let us check that KerTa is nearly S∗-invariant. Suppose Taf = 0 and f ⊥ 1;
then f = SS∗f . Let us apply the commutation relation (2.2) to S∗f : we get

S∗TaSS
∗f = TaS

∗f.

The left hand side is S∗Taf = 0, hence S∗f ∈ KerTa, as claimed.
2) Since KerTa is a nearly invariant subspace, by Hitt’s theorem there are two

possibilities: (i) KerTa = pKθ where p is an isometric multiplier on Kθ, and (ii)
KerTa = pH2, where p is inner. Let us show that the second possibility implies
Ta = 0. Let f ∈ H2, and Ta(pf) = 0, where p is inner. This means P (apf) = 0,
i.e.

apf ∈ zH2.

Since p is inner, this can be equivalently rewritten as

af ∈ pzH2.

Since pH2 ⊂ H2, we obtain f ∈ KerTa. Recall that f was an arbitrary element in
H2; this, we get Ta = 0.

Example. Let θ be an inner function; consider the Toeplitz operator Tθ. It is easy
to see that in this case

KerTθ = Kθ.

3. Schmidt subspaces of Hankel operators

3.1. Preliminaries. Recall that Hankel operators satisfy the commutation rela-
tion

S∗Hu = HuS. (3.1)

First we discuss Hankel kernels. If Huf = 0, then by (3.1) we also have

0 = S∗Huf = HuSf.
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Thus, Hankel kernels are invariant under the shift operator S, and so by Beurling’s
theorem they have the form ψH2 for some inner function ψ. Taking orthogonal
complements, we obtain

RanHu = Kψ. (3.2)

Next, we want to discuss one particular example: Hankel operators with inner
symbols. Let θ be inner; consider the Hankel operator Hθ,

Hθf = P (θf).

It is straightforward to see that in this case we have

KerHθ = zθH2, RanHθ = Kzθ,

and Hθ is an anti-linear involution on Kzθ,

Hθf = θf, f ∈ Kzθ.

It follows that H2
θ is the orthogonal projection onto Kzθ. In other words, in this case

we have only one singular value s = 1, and the corresponding Schmidt subspace
EHθ(1) = Kzθ.

3.2. Main result.

Theorem 3.1. Let Hu be a bounded Hankel operator on H2, and let s > 0 be a
singular value of Hu:

EHu(s) = Ker(H2
u − s2I) 6= {0}.

Then there exists an inner function θ and an isometric multiplier p on Kθ such
that

EHu(s) = pKθ.

Before embarking on the proof, we note that EHu(s) may or may not be nearly
S∗-invariant. Indeed, it may happen that EHu(s) is orthogonal to 1.

Example. Let 0 < α < 1, and let

u(z) =
1− α2

1− αz2
.

Exercise. Check that Huu = u.

Thus, 1 is a singular value, and u ∈ EHu(1).

Exercise. Applying S∗ to the identity Huu = u, check that Hu(zu) = α(zu).

Thus, α is a singular value, and zu ∈ EHu(α).

Exercise. Check that rankHu = 2. Deduce that

EHu(1) = span{u}, EHu(α) = span{zu}.

Summarising, we see that EHu(α) ⊥ 1.
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Proof of Theorem 3.1 in the case EHu(s) 6⊥ 1.
1) Let us establish some identities. Besides (3.1), we need the rank one identity

SS∗ = I − 〈·,1〉,
and the obvious identity Hu1 = u. Using (3.1), we have

S∗H2
uS = HuSS

∗Hu = H2
u − 〈·, Hu1〉Hu1 = H2

u − 〈·, u〉u.
(Compare this with the identity S∗TS = T for Toeplitz operators!) Let us multiply
the last identity by S∗ on the right. After rearranging, we obtain

S∗H2
u −H2

uS
∗ = 〈·,1〉S∗Huu− 〈·, Su〉u. (3.3)

2) We need to establish the existence of an element h ∈ EHu(s) such that
〈u, g〉 6= 0. This follows from the assumption EHu(s) 6⊥ 1. Indeed, let h ∈ EHu(s)
be such that 〈h,1〉 6= 0; take g = Huh. Then

〈u, g〉 = 〈ug,1〉 = 〈Hug,1〉 = 〈H2
uh,1〉 = s2〈h,1〉 6= 0.

3) Let us prove that EHu(s) is nearly S∗-invariant. Let f ∈ EHu(s) ∩ 1⊥, and
let g as above. Let us take the bilinear form of (3.3) on the elements f , g. For the
left hand side, we have

〈S∗H2
uf, g〉 − 〈H2

uS
∗f, g〉 = s2〈S∗f, g〉 − 〈S∗f,H2

ug〉 = s2〈S∗f, g〉 − s2〈S∗f, g〉 = 0.

For the right hand side, we have

〈f,1〉〈S∗Huu, g〉 − 〈f, Su〉〈u, g〉;
by assumption f ⊥ 1, and so we obtain

〈f, Su〉〈u, g〉 = 0.

But 〈u, g〉 6= 0, and so we obtain that 〈f, Su〉 = 0.
Now let us substitute f back into (3.3) and use the latter fact; the right hand

side vanishes and we have

S∗H2
uf −H2

uS
∗f = 0.

Since H2
uf = s2f , this can be rewritten as

(H2
u − s2I)S∗f = 0,

and so S∗f ∈ EHu(s), as claimed.
Thus, EHu(s) is a nearly S∗-invariant subspace.
4) By Hitt’s theorem, either EHu(s) = pKθ (where p is an isometric multiplier

on Kθ) or EHu(s) = pH2 (where p is inner).

Exercise. Show that the second option is not possible. Use the fact that the
calculation from the previous step of the proof shows that

S∗(EHu(s) ∩ 1⊥) ⊂ EHu(s) ∩ u⊥.
Compare this with

S∗(pH2 ∩ 1⊥) = pH2
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if p is inner. Bring this to a contradiction.

This completes the proof. �

Proof of Theorem 3.1 in case EHu(s) ⊥ 1. Let α, |α| < 1, be such that α is not a
common zero of all elements of EHu(s). Let µ be the Moebius map

µ(z) =
α− z
1− αz

,

mapping the unit disk onto itself, and let Uµ be the corresponding unitary operator
on H2:

Uµf(z) =

√
1− |α|2

1− αz
f(µ(z)).

By a direct calculation, Uµ is a unitary involution on H2.

Exercise. Check that UµHuUµ = Hw with some symbol w.

Now consider M = UµEHu(s). Then M = EHw(s) and z = 0 is not a common
zero of all elements of M , i.e. M 6⊥ 1. By the previous part of the proof, it follows
that M = pKθ with some θ, and p is an isometric multiplier on Kθ. Now

EHu(s) = Uµ(pKθ).

Exercise. Check that
Uµ(pKθ) = (p ◦ µ)Kθ◦µ,

and p ◦ µ is an isometric multiplier on Kθ◦µ.

This completes the proof. �

In the remainder of this section, we will discuss (mostly without proofs) some
consequences of Theorem 3.1 and some related statements.

3.3. The action of Hu on EHu(s). In fact, by the same method we obtain not
only the formula for the subspace EHu(s) but also the formula for the action of
Hu on this subspace.

Assume the hypothesis of Theorem 3.1; we have

EHu(s) = pKθ,

where p is an isometric multiplier on Kθ. By performing a Frostman shift, we can
always make sure that θ(0) = 0. In this case, we will write zθ instead of θ.

Theorem 3.2. Assume the hypothesis of Theorem 3.1, and let

EHu(s) = pKzθ,

where θ is an inner function and p is an isometric multiplier on Kzθ. Then, for
some unimodular constant eiγ, the action of Hu on EHu(s) is given by the following
formula:

Hu(pf) = seiγpHθf = seiγθf, f ∈ Kzθ. (3.4)
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The constant eiγ depends on the normalisation of p and θ; in particular, we can
normalise p and θ so that eiγ = 1, in which case formula (3.4) becomes particularly
simple:

Hu(pf) = spHθf, f ∈ Kzθ.

One can also write this formula in operator theoretic terms as

HuTp = sTpHθ, on Kzθ.

Thus, the operator Tp intertwines the action of Hu on EHu(s) and the action of

the standard involution f 7→ θf on Kzθ.

3.4. Decompositions of model spaces. Let Hu be a finite rank Hankel opera-
tor. Recall that by (3.2), we have

RanHu = Kψ

for some inner function ψ. Suppose that Hu has singular values s1, . . . , sN , and the
corresponding Schmidt subspaces are represented as

EHu(sn) = pnKzθn ,

where pn is an isometric multiplier on Kzθn . Thus, we arrive at an interesting
orthogonal decomposition of the model space Kψ:

Kψ =
N⊕
n=1

pnKzθn . (3.5)

3.5. The Adamyan-Arov-Krein theorem. Here we briefly discuss the
Adamyan-Arov-Krein (AAK) theorem, which gives additional information about
the inner factors of pn in formula (3.5). The theorem below is essentially due to
AAK in [1]; however it was expressed there in a different form, since Theorem 3.1
was not available to AAK at that point. The precise statement below is from [7].

Theorem 3.3. Assume the hypothesis of Theorem 3.1, and let

EHu(s) = pKzθ,

where θ is an inner function and p is an isometric multiplier on Kzθ. Then the
degree of the inner factor of p equals the total multiplicity of the spectrum of H2

u

in the open interval (s2,∞).

To illustrate this, let us come back to the decomposition (3.5) and write pn =
qnϕn, where qn is outer and ϕn is inner:

Kψ =
N⊕
n=1

qnϕnKzθn .
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Assume that the singular values have been ordered as s1 > s2 > · · · > sN > 0,
and let qnϕnKzθn correspond to the singular value sn. As the dimension of Kzθn is
deg(zθn), we have for every n = 1, . . . , N

degϕn =
n−1∑
k=1

deg(zθk).

In particular, for n = 1 this formula says that p1 is an outer function. Below we
prove the theorem in this particular case (following [1]). The general case is much
more difficult.

Proof of Theorem 3.3 for the top singular value. Assume s = ‖Hu‖; let us prove
that p is outer.

1) First we observe that in this case f ∈ EHu(s) iff ‖Huf‖ ≥ s‖f‖.
2) Let f = af0 ∈ EHu(s), where a is inner and f0 ∈ H2. We have

s‖f0‖ = s‖f‖ = ‖Huf‖ = ‖P (uaf0)‖ = ‖P (auf0)‖.

Observe that Pa(I − P ) = 0 and therefore

P (auf0) = P (aP (uf0)).

Thus,

‖P (auf0)‖ = ‖P (aP (uf0))‖ = ‖P (aHuf0)‖ ≤ ‖Huf0‖.
We conclude that s‖f0‖ ≤ ‖Huf0‖, and therefore f0 ∈ EHu(s).

3) Suppose p = qϕ, where ϕ is inner and q is outer. As p ∈ EHu(s), by the
previous step we have q ∈ EHu(s). Then q = ph, h ∈ Kzθ; so q = qϕh, and we
conclude that ϕ = const. �

3.6. Inverse spectral problems. Finally, without going into details, we would
like to show how to the parameterisation of Schmidt subspaces in terms of model
spaces can be used in inverse spectral problems. The following facts are borrowed
from [9]. Let N ∈ N, let

s1 > s̃1 > s2 > s̃2 > · · · > sN > s̃N ≥ 0

be real numbers, and let ψ1, . . . , ψN be any inner functions. For z ∈ D, consider
the N ×N matrix

C(z) =

{
sj − zs̃kψj(z)

s2
j − s̃2

k

}N
j,k=1

and the vectors in CN ,

Ψ =

ψ1(z)
...

ψN(z)

 , 1 =

1...
1

 .
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Then (this is a non-trivial fact!) the matrix C(z) is invertible for all z ∈ D and the
function

u(z) = 〈C(z)−1Ψ,1〉CN
is in H∞. Consider the Hankel operator Hu. Then Hu has the singular values
{sj}Nj=1 (and no others), and each Schmidt subspace of Hu can be represented as

EHu(sj) = pjKzψj (3.6)

with some isometric multipliers pj (which can also be written explicitly in terms
of sj, ψj).

Remark. (1) The numbers s̃j are arbitrary parameters in this construction.
In fact, they coincide with the singular values of the “associated Hankel
operator” HS∗u.

(2) In this construction, all Schmidt subspaces EHu(sj) are nearly S∗-invariant,
i.e. none of them is orthogonal to 1. It is however possible to modify this
construction so that Hu has also some Schmidt subspaces orthogonal to 1.

(3) The above construction gives all possible Hankel operators with the sin-
gular values {sj}Nj=1 (and no others), satisfying (3.6) and satisfying the
additional requirement that EHu(sj) 6⊥ 1 for all j. In other words,(

{sj}Nj=1, {s̃k}Nk=1, {ψj}Nj=1

)
is a complete independent set of spectral data for this inverse problem.
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