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Matrix pth Root

@ Xisapthroot(peZT)of Ac C™" «— XP=A.
@ Number of pth roots may be zero, finite or infinite.

Definition

For A € C™" with no eigenvalueson R~ = {x ¢ R: x < 0}
the principal pth root, A'/? is unique pth root X with
spectrum in the wedge | arg(A(X))| < =/p.
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Matrix pth Root

@ Xisapthroot(peZT)of Ac C™" «— XP=A.
@ Number of pth roots may be zero, finite or infinite.

For A € C™" with no eigenvalueson R~ = {x ¢ R: x < 0}
the principal pth root, A'/? is unique pth root X with
spectrum in the wedge | arg(A(X))| < =/p.

For A € C™" with no eigenvalues on R~ the
principal logarithm , log(A) , is unique solution of &X = A
with | Im A(X)| < 7.
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Arbitrary Power

Definition

For A € C™" with no eigenvalues on R~ and s € [0, c0),
As = e3'°94 where log A is the principal logarithm.

. snns(:w)A/ (t's1+A)"at,  se(0,1).
0
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Arbitrary Power

Definition

For A € C™" with no eigenvalues on R~ and s € [0, c0),
As = e3'°94 where log A is the principal logarithm.

. snns(:w)A/ (t's1+A)"at,  se(0,1).
0

Applications:

m Pricing American options (Berridge & Schumacher,
2004).

m Finite element discretizations of fractional Sobolev
spaces (Arioli & Loghin, 2009).

m Computation of geodesic-midpoints in neural networks
(Fiori, 2008).
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Approximate Diagonalization

If A= XDX~', D = diag(d)), then f(A) = Xf(D)X~'.
OK numerically if X is well conditioned.

For any A, let E = erandn(n), A+ E = XDX~'. Then
(Davies, 2007)

f(A) ~ Xf(D)X .

m Especially useful for As.

m A Test Problem for Computations of Fractional Powers
of Matrices (Davies, 2008).
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Root Oddities (1)

@ Turnbull (1927): A3 = I,, where

Ay =

@ B2 = [, where

B, =

1
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0

0

0
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0

Arises in BDF solvers for ODEs.
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Root Oddities (2)

@ Bambaii & Chowla (1946): B! = |, where

@ Hill (1932): US patent for involutory matrices in

cryptography.
Bauer (2002): “since then the value of mathematical
methods in cryptology has been unchallenged.”

@ Real square roots of —/:

[a 1+a2r:[—1 0

1 -a 0 —1}’ act.

Nick Higham Roots of Matrices 6/37


http://www.mims.manchester.ac.uk/

Markov Models

m Discrete-time Markov process with transition probability
matrix P, time unit 1. Unitis 1 year in credit risk
modelling.

m Transition matrix for fractional time unit o is P%.
m If P is embeddable, P = e? for generator Q with

q; > 0 (i # /), >/~ gj = 0. Then P~ = <.
Problems:

m P may not be embeddable.
m P’k may not be a stochastic matrix.
m Is there a stochastic root?
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Email from a Power Company

The problem has arisen through proposed
methodology on which the company will incur
charges for use of an electricity network.

| have the use of a computer and Microsoft Excel.

| have an Excel spreadsheet containing the
transition matrix of how a company'’s [Standard &
Poor’s] credit rating changes from one year to the
next. I'd like to be working in eighths of a year, so
the aim is to find the eighth root of the matrix.
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m R. B. Israel, J. S. Rosenthal & J. Z. Wei. Finding
generators for Markov chains via empirical
transition matrices, with applications to credit
ratings. Mathematical Finance, 2001.

m D. T. Crommelin & E. Vanden-Eijnden. Fitting
timeseries by continuous-time Markov chains: A
quadratic programming approach. J. Comp. Phys.,
2006.

m T. Charitos, P. R. de Waal, & L. C. van der Gaag.
Computing short-interval transition matrices of a
discrete-time Markov chain from partially observed
data. Statistics in Medicine, 2008.

m M. Bladt & M. Sgrensen. Efficient estimation of
transition rates between credit ratings from
observations at discrete time points. Quantitative
Finance, 2009.
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HIV to Aids Transition

m Estimated 6-month transition matrix.
m Four AIDS-free states and 1 AIDS state.
m 2077 observations (Charitos et al., 2008).
0.8149 0.0738 0.0586 0.0407 0.0120
0.5622 0.1752 0.1314 0.1169 0.0143
P= 103606 0.1860 0.1521 0.2198 0.0815

0.1676 0.0636 0.1444 0.4652 0.1592
0 0 0 0 1

Want to estimate the 1-month transition matrix.

A(P) = {1,0.9644,0.4980,0.1493, —0.0043}.
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Toolbox of Matrix Functions

m Want techniques for evaluating interesting f at matrix
arguments.
m Example:
2

d
d—tf + Ay =0, y(0) =0, Y'(0)=y

= y(t) = cos(vVAt)yo + (VA) ' sin(VAL)Y,,

where /A is any square root of A.
m MATLAB has expm, 1logm, sgqrtm, funm and »

Functions

of Matrices
Theory and Computation

£ Nicholas J. Higham

i
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Visser lteration for A'/?

Xir1 = X +a(A=XE),  Xo=(2a)7'l.
m Used with a« = 1/2 by Visser (1932) to show positive
operator on Hilbert space has a positive square root.

m Enables proof of existence of A'/2 without using
spectral theorem.

m Likewise in functional analysis texts, e.g. Riesz &
Sz.-Nagy (1956).

m lteration used computationally by Liebl (1965),
Babuska, Prager & Vitasek (1966), Spath (1966), Duke
(1969), Elsner (1970).

m Elsner proves cgce for A € C"™" with real, positive
eigenvalues if 0 < o < p(A)~1/2.
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Visser Convergence

Xir1 = X +a(A=XE),  Xo=(2a)7'l.
Theorem (H, 2008)
Let Ac C™" and a > 0. If A(I — 4a2A) lies in the cardioid

D={2z-22:z€C, |z|] <1}

then A'/? exists and X, — A'/? linearly.
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lteration for Al/P

Rice (1982):

1
Xwt = X+ S(A=XE), X =0.

For Hermitian pos def A, 0 < X, < Xk for all k and
Xk — A1/,D‘
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Existence of pth Roots

Theorem (Psarrakos, 2002)

A € C™" has a pth root iff for every integer v > 0 no more
than one element of the ascent sequence”d;, ds, . ..
defined by

d; = dim(null(A")) — dim(null(A"~))

lies strictly between pv and p(v + 1).

m For J=J(0) € C™", dim(null(J*)) = k, k = 0: n,
{di} ={1,1,...,1}; no pth root for p > 2.
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Existence of Real pth Roots of Real A

A € R™" has a real pth root iff it satisfies the ascent
sequence condition and, if p is even, A has an even number
of Jordan blocks of each size for every negative eigenvalue.
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Block Triangular Case

Let

where A(A11) N A(Ax) = 0. Then any pth root of A has the
form

X — {Xn X12] ’

0 X

where XP = Aj, i = 1,2 and Xi2 is the unique solution of the
Sylvester equation A11X12 = X12A22 = X11A12 - A12X22.

m Proof reduces A to diag(A11, A).
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Classification of pth Roots of A € C™"

Jordan canonical form Z='AZ = J = diag(, J;)-
All pth roots of A are given by A = Zdiag(Xo, X;)Z~', where

m X = J; (have characterization),
m XJ = Jo (no nice characterization).

History:
m Cayley (1858, 1872).
m Sylvester (1882, 1883).
m Gantmacher (1959).
m Higham (1987).

Nick Higham Roots of Matrices 18/37


http://www.mims.manchester.ac.uk/

Stochastic Matrices

AcR™ A>0, Ae = e.

Let A € R"™" be stochastic. Then
mp(A)=1;
m 1 /s a semisimple eigenvalue of A with eigenvector e;
m if Ais irreducible, then 1 is a simple eigenvalue of A.
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Nonneg Root may not be Stochastic

XP = Aand X > 0 imply that p(X) = p(A)'/P = 1 is an ei'val
with ei’'vec v > 0 (Perron—Frobenius) but notthat v = e:

1/2 1/2 0
A=|1/2 1/2 0|,  A(A) ={1,1,0}.
0 0 1
A = X3 for

0 0o 272
0 0 22|,  AX)={1,0,—1}.
271/2 271/2 0

X:
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... but OK for Irreducible

Let A € R™" be an irreducible stochastic matrix. Then for
any nonnegative X with XP = A, Xe = e.
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... but OK for Irreducible

Let A € R™" be an irreducible stochastic matrix. Then for
any nonnegative X with XP = A, Xe = e.

In fact ...

Let C > 0 be irreducible with e’vec x > 0 corr. to p(C).
Then A = p(C)~'D~'CD is stochastic, where D = diag(x).
Moreover, if C = YP with Y nonnegative then A = XP,
where X = p(C)~'/PD~"YD is stochastic.
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M-Matrix Connection

Definition of Nonsingular M-matrix A € R"*"
A= sl — Bwith B> 0and s > p(B).
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M-Matrix Connection

Definition of Nonsingular M-matrix A € R"*"
A= sl — Bwith B> 0and s > p(B).

If the stochastic matrix A € R™" js the inverse of an
M-matrix then A'/P exists and is stochastic for all p.

Proof
m Since M = A" is “M”, Re \;(M) > 0 so M'/P exists.
m M'/Pis an M-matrix for all p (Fiedler & Schneider,
1983)
m Thus A'/P = (M'/P)=1 > 0 for all p, and A'/Pe = e
(shown via JCF arguments), so A'/? is stochastic.
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Example 1

1
11
A: 2 2
i1
n n n
1
1 2

0o 0 -+ —(n—=1) n
A-'is an M-matrix so A'/? is stochastic for all p > 0.
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Example 2

2

Y2 =

- O O O

0
1
1
1

—_ = -
—_ o -
DN —=
WwnNp —
A ON =

(M) = Isec(km/(2n+1))%, k=1:n.
Positive e’vec x for p(M).
m A= p(M)""D-'MD is stochastic, where D = diag(x),
has stochastic sg. root X = p(M)~"/2D=1YD.
m Note: X is indefinite.

m But A has another stochastic sg. root: A'/2, by previous
theorem!
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Example 2 cont.

For n = 4:
0.1206 0.2267 0.3054 0.3473
0.0642 0.2412 0.3250 0.3696
0.0476 0.1790 0.3618 0.4115
0.0419 0.1575 0.3182 0.4825

0 0 0 1.0000
0 0 0.4679 0.5321
0 0.2578 0.3473 0.3949
0.1206 0.2267 0.3054 0.3473

0.2994 0.2397 0.2315 0.2294
0.0679 0.3908 0.2792 0.2621
0.0361 0.1538 0.4705 0.3396
0.0277 0.1117 0.2626 0.5980

2

2

Nick Higham Roots of Matrices 25/37


http://www.mims.manchester.ac.uk/

Roots of Matrices 26/37



http://www.mims.manchester.ac.uk/

m A stochastic matrix may have no pth root for any p.
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m A stochastic matrix may have no pth root for any p.

m A stochastic matrix may have pth roots but no
stochastic pth root.
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m A stochastic matrix may have no pth root for any p.

m A stochastic matrix may have pth roots but no
stochastic pth root.

m A stochastic matrix may have a stochastic principal pth
root as well as a stochastic nonprimary pth root.
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m A stochastic matrix may have no pth root for any p.

m A stochastic matrix may have pth roots but no
stochastic pth root.

m A stochastic matrix may have a stochastic principal pth
root as well as a stochastic nonprimary pth root.

m A stochastic matrix may have a stochastic principal pth
root but no other stochastic pth root.
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m A stochastic matrix may have no pth root for any p.

m A stochastic matrix may have pth roots but no
stochastic pth root.

m A stochastic matrix may have a stochastic principal pth
root as well as a stochastic nonprimary pth root.

m A stochastic matrix may have a stochastic principal pth
root but no other stochastic pth root.

m The principal pth root of a stochastic matrix with
distinct, real, positive eigenvalues is not necessarily
stochastic.
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m A (row) diagonally dominant stochastic matrix may not
have a stochastic principal pth root.

9.9005 x 10~" 9.9005 x 10~/ 9.9500 x 10~3
A= [9.9005x 107 9.9005 x 10~" 9.9500 x 1073 | .
4.9750 x 1073 4.9750 x 1072 9.9005 x 10"

None of the 8 square roots of A is nonnegative.
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m A (row) diagonally dominant stochastic matrix may not
have a stochastic principal pth root.

9.9005 x 107 9.9005 x 10~" 9.9500 x 10~3

9.9005 x 10~" 9.9005 x 10~/ 9.9500 x 10~3
A= :
4.9750 x 1073 4.9750 x 1072 9.9005 x 10"

None of the 8 square roots of A is nonnegative.

m A stochastic matrix whose principal pth root is not
stochastic may still have a primary stochastic pth root.

010 0 0 1
A=1001|=]100

100 010

2

= X2

A(A) = A(X) = {e*27/3,1}.
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Embeddability Problem

When can nonsingular stochastic A be written A = e® with
q,-,-20fori7£jand2jq,-,-:0,i:1:n?

Kingman (1962): holds iff for every positive integer p there
exists some stochastic X such that A = XP.
Conditions (e.g.)
m det(A) >0
[ | det(A) < H,- aji
are necessary for embeddability of a stochastic A but not

necessary for existence of a stochastic pth root for a
particular p.

New classes of embeddable matrices. )
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Inverse Eigenvalue Approach

Karpelevi¢ (1951) determined
Op={X: X e A(A), Ae R™" stochastic }.

Theorem

O, C unit disk and intersects unit circle at €3/ all a, b s.t.
0 < a< b < n. Boundary of ©, is curvilinear arcs defined
by

MO =)= (1 -1,
(A=) = (1= 1)°A,

where0 < t<1,andb,d,q,s,r € Z" determined from
certain specific rules.
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Necessary Condition

If Aand X are stochastic and XP = A then it is necessary
that
N(A) € OF = {\W: Ao, foralli.
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Powers 2.3,4,5forn=3
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Powers 2,3,4,5forn=4
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13 1/3 0 1/3
A_| 12 0 12 0
~110/11 0 0 1/11
1/4 1/4 1/4 1/4

1

~

1

p
&
_0.5\\' /
_11
A cannot have a stochastic 12th root, but may have a

stochastic 52nd root. None of the 52nd roots is stochastic;
A'/12 and A'/%2 poth have negative elements.

Nick Higham
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Dependence on n

| @3§@4§@5g

m # points at which ©, intersects unit circle increases
rapidly with n: 23 intersection points for @g and 80 for
@16-

m As nincreases the region ©, and its powers tend to fill
the unit circle.
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Practicalities

m HIV-Aids matrix has spectrum
A(P) = {1,0.9644,0.4980,0.1493, —0.0043}.

No real pth root for even p.

m Practitioners regularize the principal pth root—several
approaches.

m Practitioners probably unaware of existence of a
non-principal stochastic root.
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Conclusions

m Literature on roots of stochastic matrices emphasizes
computational aspects over theory.

m ldentified two classes of stochastic matrices for which
A'/P is stochastic for all p.

m Wide variety of possibilities for existence and
uniqueness, in particular re. primary versus nonprimary
roots.

m Gave some necessary spectral conditions for
existence.

m More work needed on theory and algorithms.

N. J. Higham and L. Lin. On pth roots of stochastic
matrices. MIMS EPrint 2009.21, March 2009.
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