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The random model
Consider Hy,, a Z-ergodic random operator on .77 = L*(R9) or £*(Z4) i.e.

e for , a probability space, w € Q — Hy, is a weakly measurable family of
self-adjoint operator on 57,

o there exists (Ty)yezd, an ergodic group of probability preserving transformation
on  s.t.

where (Tyu)(x) = u(x— ) for y € Z4.
“Spectral” objects almost surely constant e.g. spectrum, a.c., s.c., p.p. spectra.

Two standard examples:

@ The discrete Anderson model: on L>(RY), Hg, = —A+V,

» —A discrete Laplacian,
» V, diagonal matrix with i.i.d. entries with nice distribution.

@ The continuous Anderson model: on /%(Z%), Hgy=—-A+W+V,

> —A Laplacian on R? and W : R? — R Z?-periodic potential,
» Vo = Z wyu(. _'}/)
YEZ4
* (@y)y i.i.d. random variables with nice distribution,
* y bounded with compact support and fixed sign. vvensie PAR
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Basic assumptions on the random model

Let o be the almost sure spectrum of H,.

Assume that H, admits an integrated density of states i.e.

N(E et HE O Ha(A) s than )

where H,(A) is the operator Hy, restricted to A (periodic BC).
In 7, N(E) dist. funct. of a.c. measure with bounded density v (E).

Fix I C R a compact interval.

In 7, we assume that H, satisfies a Wegner estimate i.e. for J C I,
W) P{tr(Ly(Ho(A))) 2 1}) < ClJ]|A]

where
@ o(H) is the spectrum of the operator H,
e P(Q) denotes the probability of the event Q;

Known to hold for many models in particular for the Anderson models
under mild regularity conditions on the random variables. m
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In 7, we assume that H, satisfies a Minami estimate i.e. for J C 1,
M B({t(L(Ho(A)) > 2}) < C(J]|A].

This 1s known to hold for

o the discrete Anderson model under mild regularity assumptions on the r.v.
(Minami, Bellissard et al., Graf et al., Combes-Germinet-Klein);

@ the continuous Anderson model in the “Lifshitz tails” region (CGK).

The localized regime
Basic result in theory of RSO: there exists regions in the spectrum, typically the edges
of the spectrum, where spectrum is p.p. and the eigenfunctions are exp. decaying.

We assume:
e for some & € (0,1] and v > 0, for any p > 0, there exists g > 0 such that, for
L > 1, with probability larger than 1 — L7, if
> (. is a normalized eigenvector of Hy (A ) associated to Ey, o €1,
> xp(®) € Ar is a maximum of x — ||@,, e ||x+c on AL

—Ylx— 3
then, for x € Az, one has || ¢ || c < Le”W—n(@)°

FMM provides & = 1, MSA & arbitrarily close to 1.

ersite PAR
UNIVERSITE AR
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The questions

Local level statistics: Fix Ey € I s.t. V(Ep) := N'(Ey) > 0.
Renormalized local levels near Ej:

Gi(Eo, 0,A) = [A|v(Ep) (Ej(®,A) — Eo).

N
Distribution function: E(&,Eo, ®,A) = Y 8 (5,.0.0) (§):
j=1

Localization center statistics: Let @, o normalized eigenvector associated to E, o € I.
Localization center for E,  is a maximum of x — ||@, o ||x+c-
A priori not unique!
Localization centers contained in ball of radius < (logL)!/ 3

N
Distribution function: Z°(&,x; Eg,AL) = Y| Oy (w)/L(%)-
j=1

Joint statistics: distribution function:

N
B (&, x;Eg,AL) = Z‘i O, (Eg,0,0) (§) @ Oy (@)L (%)-
J:
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Joint statistics: one can change the scaling. Fix scaling function A +— /, s.t.
@ /p — +oo when |A| — oo,
@ /4 not too large, not too small,
Distribution function of covariantly scaled joint statistics:

EA(&,x:E, L) Z V(Eo) (Ej(@.0)~Eg)(204)4 (5) © Oy () /0, (%)

Level spacings statistics: Let (Ej(A, m))1<j<n be eigenvalues ordered increasingly;
N = N(®) random number.

Renormalized eigenvalue spacings
SEJ(A> o) = [Al( J+1( , ) _Ej(A7 ®)) > 0.
Renormalized eigenvalue spacings distribution:

#j: SE,(A,0) > x}

DLS(x;A, ®) = N

Another point of view: The spectrum of Hy, is I is p.p. with exp. dec. eigenfcts.
Localization centers well defined.

For typical @, consider eigenvalues in I with localization center in Ay.
Ask same questions as above.

trsite PAR
universite P H
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Local eigenvalue statistics:

Theorem (Molchanov, Minami, Combes-Germinet-Klein, G.-Kl.)

Under the assumptions above, as |A| — oo, (& Eq, 0, A) converges weakly to a
Poisson process on R with intensity measure the Lebesgue measure.

Correlation of local statistics:
Consider the limits of E(&, Ey, @, A) et E(§, E|), @, A) of Ey # E|,.

Q: Are they independent ?
Generalized Minami estimate : forJ C K C I,
(GM) P({tr(1;(Hp(A))) > 1 and tr(1x(Hyp(A))) >2}) < C|J|[K] |A\2.

Known for discrete and certain continuous Anderson models [CGK]
Decorrelation estimates (D): for o € (0,1) and {Ey, E|} C I t.q. Ep # Ej,, when
L — 4+ooand ¢ < LY,

D) P (L, (Ho(Ar) > 1 and (1 (Ho(A))) > 1| = o ( (/1))
where I, = Eg+L™[—1,1], I} = E, + L™[—1,1].

Known for discrete Anderson in dim. 1 at all energies and for arbitrary d if
Fy— Ep| > 2d K1) Ll
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Theorem

Assume (W), (M), (Loc), (GM) and (D). Pick Ey # Ej, s.t. v(Ey),V(E[) > 0.

When |A| — +oo, E(Ep, ®,A) and E(E|, ®,A) converge to two independent Poisson
processes i.e. for Uy C R and U_- C R compact intervals and {k, ,k_} € Nx N, one
has

Pl o #{j; Gi(Eo, 0, A) € UL} =k L, vyl U+ [ o—1U- |U—\k_.
#{j;&(Ep, 0,A) e U_} =k_ | | a—zd k! k_!

Question: minimal distance between E and E|, to keep independence?

Theorem

Assume (W), (M), (Loc), (GM). Pick Ey s.t. v(Eg) > 0 and v cont. near Ey.
IfEp € I and E), € I such that

@ Ep — Ep «— E)\, when |A| — oo,
o |A|-|[Ex —E)\| — 4o when |A| — oo,

then, as |A| — +oo, E(E,Ep, @,A) and E (€ E!\, @, A) converge to two independent
Poisson processes on R.
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Local localization center statistics

Theorem (Nakano, Nakano-Killip)

Under the assumptions above, as |A| — oo, E2(E Eq, ®,A1) converges weakly to a
Poisson process on R x [—1, l]d with intensity measure the Lebesgue measure.

Fix sequence of scales ¢ = (¢4 ) such that

(£n) _
log | A |A|—eo

+oo and 204 < |A|V9

Pick Ey € I so that V(Ep) > 0 and recall covariantly scaled joint local distribution

E 5 X3 E07 Z 6 V(Ey)(E EO)(ZKA)d(é) ® 5xj(a))/£,\ (.Xf)
The process valued in R x RY. Define ¢, = lim |A|"9(204)7" € [1,+oo].

Theorem

The point process 312\(‘5 ,X; Eg,0) converges weakly to a Poisson process on
R x (—cyg,cp)? with intensity measure the Lebesgue measure.
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For non covariant scales: consider scales, say £ = (¢5)x and ¢’ = (¢, )5 as above.
Distribution function:

N
EA(E X Eo, 0,0) = Z V(Eo) (E; (@A)~ Eo) (264 (5) © Oy(w) /01, (X).

]:

Theorem

Let J and X be bounded open sets respectively in R and (—cy, cgf)d C R?. One has
o ifl) /ln — O then, in L},

/J 2(£.x:Ep,0,0)dEdx — O

Ao

o if U Jln — oo then, in L},

d
() [ Fremmterga, — iixi
O ) Jixx~ A=

T
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Level spacing distribution

Let Ey C I5 compact interval s.t. V(Ep) > 0.

For statistics, /5 needs to contain asymptotically infinitely many energy levels of
Hgy(A) i.e. assume

IA|-|Ix| > 400 and  |Ip|-log?% |A|—0 when |A|— oo,

Let (Ej(®w,A))1<j<n €.v. in I5 ordered increasingly: Ej(@,A) < Ej;i(®,A).
Their number N is random of size V(Ey)|A| - |Iz] (by existence of IDS).
Consider the renormalized eigenvalue spacings

OEj(@,A) = |A|V(Eo)(Ejr1(@,A) — Ej(®,A)) > 0.
Empirical distribution :

#{j; OEj(w,A) > x}

DLS(x:®,A) =
0N = = AT I

for x > 0.

Theorem
The empirical distribution of level spacings DLS(x; @, ) converges to the distribution
x +— e ¥ in probability as |A| — +oo, that is, for any € > 0,

supIP({’DLS(x;a),A)—e_x‘28}) — 0.
x>0 |A|—o0

v
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What happens on larger energy intervals?

Theorem

Pick Ey € I s.t. V(Ey) > 0 and E — V(E) be diff. at Ey. Assume Ip s.t. |A|-|Ip| — +oo
and |Ix| — 0 when |A| — +oo.

Then, the empirical distribution of level spacings DLS(x; ®,A) converges to the
distribution x — e~ in probability as |A| — +oo.

Optimal as DS necessary in renormalization to get universal result.
Macroscopic energy intervals:

Let J C I compact s.t. E — V(E) be continuous on J and let N(J) := [, v(E)dE > 0.
Renorm. spacings: for 1 <j <N, O;Ej(w,A) = |A|N(J)(Ej11(@,A) —Ej(®w,A)).
Empirical distribution denoted by DLS' (x; I, ®,A).

Theorem

As |A| — oo, the empirical distribution of level spacings DLS' (x; I, @, A) converges
in probability to the distribution x — gy j(x) defined by

o) =1— / eV EXY (EVIE et vy =N"'(J)v(E).
J
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Localization center spacings distribution

In A, number of centers corresponding to energies in /5 roughly v(Ey) |Ix| |A].
Reference mean spacing: (|A|/[v(Eo) |Ix]|A]])Y4 = (v(Eo) - [I5])~1/4.
Empirical distribution of center spacing:

#{j; (V(Eo)|IA])"/¥ min; 4 |x;(®) — xi(®)| > s}

DCS(s: A, ) =
(5:A,0) V(Eo) -lIn|- A

Theorem

The empirical distribution of localization center spacings DCS(s; A, ®) converges to
. _sd . e .
the distribution s — e™* in probability as |A| — oo, that is, for any € > 0,

Zs}) — 0.
|A|—+o0

supP <{ )DCS(s;A, ) — e

s>0

W
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The main ideas of the proofs

Localized regime = e.v. depend only on local picture of potential = explicit
description of the eigenvalues in / in terms of eigenvalues of smaller independent
cubes.

@ pick cube of size L

@ the localization centers

@ Cut large cube into smaller cubes of .
size ¢

@ Problems: ° ° °

» multiple centers in small cubes
probability is small due to Minami’s J
estimate: £24|1|?(L/¢) = 41717 R

» centers not localized well in cube
probability is small due to Wegner’s ° °
estimate: [- L1 1|

@ With good probability, this does not
occur.

So with good probability, in 7, e.v. of big cube given by e.v. of small cubes.

ersite PAR
UNIVERSITE AR
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Following these ideas, we prove

Theorem

Pick o, B s.t. 1>aand B—d/(d+2)=2(oc—(d+1)/(d+2)) >0. Set ¢ = LP and
N=N'""B SetN=1L%andI% =[Ey—N~% Ey+N % CI.

There exists p > 0 such that, for N large enough, there exists a set of configurations

ZN s.t.
-] ]P)(g]\l> >1—-N7,
o for @ € Zy, each box A(Y;) := 7+ 10,1 satisfies:

Q rthe Hamiltonian He(A¢(7;)) has at most one eigenvalue in Iy, say, Ej(®,A¢(Y)));

Q Ay() contains at most one center of localization, say xi,(®,L), of an eigenvalue of
Hgp in I3, say Ekj(a),L);

© Ay(y)) contains a center x,(®,L) if and only if 6(He(Ae(Y))) NIy # 0;

then, |Ey, (o,L) — Ej(@,A¢(7))| = O(L™™) and dist(xy, (@,L), AL\ Ae(%)) > L.

v
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Problem : for analysis, energy intervals have to be small.
On larger intervals, still possible but cannot control all eigenvalues.

Still enough for level spacings.

Theorem

Pick o0 = (OCN)N s.t. limy oy \ 0. Set N = n/OCN, n= n,/OCN, n = (RlogN)d, with R
large. Set I¢ = [Eo — in, Eg +i,) C I with iy = n'/?> c(logN) o},

For any p > 0 and N large enough, there exists a set of configurations Zy so that

o P(ﬁﬁv) >1—-N77P,

N
e forall w € Zy, there exists at least —(1 — o(1)) disjoint boxes A¢(y;) satisfying
n

the properties described in the previous theorem.

st PAR
universite P H
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