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In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008,
and Bordeaux Montrieux-Sjöstrand 2009, established

almost sure Weyl asymptotics for small random
perturbations of non-self-adjoint elliptic operators

We would like to present of a related simpler result in a simpler
setting...

Hager 2007 (unpublished) already explained how this result follows
from the results in the papers above.

But the proof is different, hopefully simpler...



In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008,
and Bordeaux Montrieux-Sjöstrand 2009, established

almost sure Weyl asymptotics for small random
perturbations of non-self-adjoint elliptic operators

We would like to present of a related simpler result in a simpler
setting...

Hager 2007 (unpublished) already explained how this result follows
from the results in the papers above.

But the proof is different, hopefully simpler...



In a series of recent papers Hager-Sjöstrand 2006, Sjöstrand 2008,
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The simpler setting is the semiclassical quantization of a torus, a
special form of the Berezin-Toeplitz quantization:

T = S1
x × S1

ξ

To a function f ∈ C∞(T) we will associate a family of N × N
matrices, fN ,

f 7−→ fN

with the following properties:

I ‖fN‖`2→`2 = supT |f |+ o(1),

I 2πiN[fN , gN ] = {f , g}N +O`2→`2(1/N),

where {•, •} is the Poisson bracket on T:

{f , g} = ∂ξf ∂xg − ∂x f ∂ξg .
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How to define fN?

Take f (x , ξ) = f (x).

Then define

fN =


f (0) 0 · · · 0

0 f (1/N) · · · 0
...

...
...

0 0 · · · f ((N − 1)/N)


which is just a discretization of f .
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How to define fN?

Suppose now f (x , ξ) = f (ξ).

Then define

fN = F∗N


f (0) 0 · · · 0

0 f (1/N) · · · 0
...

...
...

0 0 · · · f ((N − 1)/N)

FN

FN(k, `) =
exp(2πik`/N)√

N
.
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A simple example of the classical/quantum correspondence:

tr gN = N

∫
T
g +O(N−∞) ,

for g ∈ C∞(Tn).
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f (x , ξ) = cos 2πx + i cos 2πξ .

Spec (f100):

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!1

!0.8
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!0.2
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0.8

1

The spectrum is very unstable and its structure is related to the
analytic continuation of f .
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Similarly we can quantize T2:

C∞(T2) = C∞(T)⊗ C∞(T) ,

f ⊗ g 7−→ fN ⊗ gN : CN ⊗ CN −→ CN ⊗ CN ' CN2
.

The semiclassical parameter is still

h =
1

2πN
,

in the sense that

2πiN[FN ,GN ] = {F ,G}N +O`2→`2(1/N) , F ,G ∈ C∞(T2) .

And it works the same for Tn...
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Theorem (Hörmander 1960, · · · , Davies 1999, Zworski 2001,
Dencker-Sjöstrand-Zworski 2004, Chapman-Trefethen 2004,
Borthwick-Uribe 2004)

Suppose that z0 = f (x0, ξ0) and that

{Re f , Im f }(x0, ξ0) < 0 .

Then there exist uN ∈ `2(ZN), ‖uN‖`2 = 1, microlocalized to
(x0, ξ0) such that

‖(fN − z0)uN‖ = O(N−∞) .

When f is real analytic O(N−∞) can be replaced by e−N/C .

In both cases, theorem states that z0 is “almost” an eigenvalue.
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What does it mean to be microlocalized to (x0, ξ0)?

We say that the family uN , ‖uN‖`2 = 1, is microlocalized to
(x0, ξ0) ∈ T if

g ∈ C∞(T) , g ≡ 0 near (x0, ξ0) =⇒ ‖gNuN‖`2 = O(N−∞) .
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A more systematic quantization procedure:

∂αx ,ξa = O(1) , ∀α ∈ N2n

a 7−→ aw (x , hD) : S(Rn)→ S(Rn)

aw (x , hD)u =
1

(2πh)n

∫ ∫
a

(
x + y

2
, ξ

)
e

i
h
〈x−y ,ξ〉u(y)dydξ .

Here u ∈ S(Rn) if xβ∂αu = O(1).
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What is the connection with the previous quantization?

A function f ∈ C∞(T) can be identified with a periodic function
on R× R. What about states uN?
We look for u ∈ S ′(R) which are period in x and in ξ:

Fhu(ξ + 2πk) = Fhu(ξ) , k ∈ Z ,

Fhu(ξ) =
1√
2πh

∫
u(x)e

i
h
〈ξ,x〉dx .

Poisson summation formula shows that such distributions
(elements of S ′) exist only for h = 1/2πN and form a space of
dimension N.

aN = aw (x , hD) , acting on this space
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Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn).

Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2.

Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
=

Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))

+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



Theorem
Let RN(ω) be random Nn ×Nn matrices with complex N(0,1) i.i.d.
entries and let f ∈ C∞(Tn). Suppose that Ω ⊂ Ω b C and that
for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 ,

for some 1 < κ ≤ 2. Then for any p > n + 1/2,

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
= Nn volTn (f −1(Ω))+O(Nn−β)

where

β =
κ− 1

κ+ 1
.

This means that Spec (fN + N−pRN(ω)), unlike Spec (fN), displays
a probabilistic Weyl law for the eigenvalues.



A numerical illustration:

f (x , ξ) = cos 2πx + i cos 2πξ , N = 100 .
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A numerical illustration:

Ω = Ωr = {|z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .
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A numerical illustration:

Ω = Ωr = {|z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .
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A numerical illustration:

Ω = Ωr = {|z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .

N = 300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

blue line: N volT (f −1(Ωr )),
red lines: |Spec (fN + N−2RN(ω)) ∩ Ωr |.



1

N
Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Weyl law
Expected value N=100
Expected value N=200
Expected value N=300



Not surprisingly we see none of the strange boundary behaviour for
the normal operators:

F (x , ξ) = cos 2πx1 + i cos 2πξ2 , N = 20
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Interestingly the false eigenvalues computed by MATLAB also
satisfy this Weyl law:
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Another example (pointed out by Bordeaux Montrieux):

f (x ,N) =

{
0 x ≤ 3/2N
1 x > 3/2N ,

(or a smoothed out version of f (x ,N) since that does not affect
fN)

g(ξ) = exp(2πiξ) .

Then fNgN is the N × N Jordan matrix.
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The theorem does not apply but a singular Weyl law still holds:

N = 100
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The theorem does not apply but a singular Weyl law still holds:

N = 300
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This is in agreement with the results of Davies-Hager and seems to
hold for more general Toeplitz operators even though the theorem
in the current form does not apply (Bordeaux Montrieux).
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Conjecture:

Define random probability measures:

µN(ω) =
1

Nn

∑
z∈Spec (fN+N−pRN(ω))

δz .

Then, almost surely in ω,

µN(ω) −→ f∗(σ
n/n!) , N −→∞ ,

σ =
n∑

k=1

dξk ∧ dxk , (x , ξ) ∈ Tn .
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Theorem:

Suppose that for z ∈ ∂Ω

volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 , (1)

for some 1 < κ ≤ 2. Then

1

Nn
Eω(µN(ω)[Ω]) = f∗(σ

n/n!)[Ω] +O(N−β) , β =
κ− 1

κ+ 1
.

Remarks:

I Condition (1) appears in Sjöstrand-Hager with κ > 0.

I If df ∧ df̄ �f −1(z) 6= 0 then it holds with κ = 2.

I For analytic functions function it always holds with some
κ > 0: a version of a  Lojasiewicz inequality (via resolutions of
singularities by Bierstone-Milman and other analytic
geometers).
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volTn ({ρ : |f (ρ)− z | ≤ t}) ≤ tκ , 0 ≤ t � 1 , (1)

The weaker assumption (1) allows z to belong to the boundary
points of f (Tn) at which necessarily df ∧ df̄ |f −1(z) = 0.

We can think of f as a map from Tn to R2 and the condition
df ∧ df̄ �f −1(z) 6= 0 means that z is a regular value of f . Hence by

the Morse-Sard Theorem, the set of z ’s at which df ∧ df̄ �f −1(z) 6= 0
holds has full Lebesgue measure in C.
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Ω = Ωr = {|Re z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .
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Ω = Ωr = {|Re z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .
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Ω = Ωr = {|Re z | < r} , f (x , ξ) = cos 2πx + i cos 2πξ .
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Here we added one more plot: numerically computed eigenvalues
of f500: the Weyl law appears for the numerically computed false
eigenvalues!



“Proof of Theorem”

|Spec (fN) ∩ Ω| =
1

2πi

∫
∂Ω

tr(fN − z)−1dz

“=”Nn 1

2πi

∫
∂Ω

∫
Tn

(f (ρ)− z)−1dL(ρ)dz + o(Nn)

= Nn

∫
Tn

(
1

2πi

∫
∂Ω

(f (ρ)− z)−1dz

)
dL(ρ)dz + o(Nn)

= NnvolTn(f −1(Ω)) + o(Nn) .



Here we tried to use the fact that

tr gN = Nn

∫
Tn

g +O(N−∞) ,

for g ∈ C∞(Tn).

The trouble is that
(fN − z)−1 6= gN

for a nice function g ∈ C∞(Tn).

A random perturbation allows this argument to go through on the
level of expected values.
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We use the singular value decomposition of fN to obtain a
reduction to a nicer family of operators.

fN = UNSNV
∗
N ,

where UN and VN are unitary and SN is diagonal with
non-negative entries.

We note that

(fN + αψ(fN f
∗
N/α

2)UNV
∗
N)−1 = O(1/α) : `2 −→ `2 ,

if ψ ≥ 0 is 1 near 0.

This is obvious once we note that

ψ(fN f
∗
N/α

2)UNV
∗
N = UNψ((SN/α)2)V ∗N
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Reduction to an invertible deterministic problem:

Suppose 0 ∈ ∂Ω and γ is a small segment of ∂Ω around 0,
|γ| ' α, |z | � α. Assume that δ � 1/N3 and δ � α. Then

∫
γ
Eω tr(fN + δRN(ω)− z)−1dz =∫

γ
Eω tr(fN + αψ(fN f

∗
N/α

2)UNV
∗
N + δRN(ω)− z)−1dz +O

(
d log

(α
δ

))
=

∫
γ

tr(fN + αψ(fN f
∗
N/α

2)UNV
∗
N − z)−1 +O

(
δ

α
Nn + d log

(α
δ

))
,

where

d = rankψ

(
fN f
∗
N

α2

)
.
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Lemma
Let A be a constant d × d matrix.

Then∫ 1

0

∣∣Eω(tr(tA + δRd(ω))−1A)
∣∣ dt ≤ C tr

(
|A|

δ + |A|
log

(
1 +
|A|
δ

))
,

where |A| =
√
AA∗, with C independent of d and A.
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Integral of expectations for A = diag([0,0,rand(1,8)])
The upper bound
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∣∣ dt ≤ C tr

(
|A|

δ + |A|
log

(
1 +
|A|
δ

))
,

where |A| =
√
AA∗, with C independent of d and A.

We use this plus deformation arguments based on

∂t tr(tA + F (z))−1F ′(z) = ∂z tr(tA + F (z))−1A ,

to obtain a reduction, à la Schur, to the operator on the previous
slide:

fN + αψ(fN f
∗
N/α

2)UNV
∗
N .
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to obtain a reduction, à la Schur, to the operator on the previous
slide:

fN + αψ(fN f
∗
N/α

2)UNV
∗
N .



Lemma
Let A be a constant d × d matrix. Then∫ 1

0

∣∣Eω(tr(tA + δRd(ω))−1A)
∣∣ dt ≤ C tr

(
|A|

δ + |A|
log

(
1 +
|A|
δ

))
,

where |A| =
√
AA∗, with C independent of d and A.

We use this plus deformation arguments based on

∂t tr(tA + F (z))−1F ′(z) = ∂z tr(tA + F (z))−1A ,
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We now work in an α size neighbourhood, γ, in ∂Ω, of a point on
∂Ω (0 for convenience)

and choose

α = hρ , 0 < ρ <
1

2
, h =

1

2πN
.

We need to show that∫
γ

tr(fN + αψ(fN f
∗
N/α

2)UNV
∗
N − z)−1 =

Nn

∫
γ

∫
Tn

(f (ρ)− z)−1dL(ρ)dz + o(|γ|Nn) .
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The problem is that fN + αψ(fN f
∗
N/α

2)UNV
∗
N is not a microlocally

characterized operator,

even in some nasty class.

We are saved by simple linear algebra: if A = USV ∗ then

(1−ψ̃(A∗A))(A+ψ(AA∗)UV ∗)−1 = (1−ψ̃(A∗A))A∗(AA∗+ψ(AA∗))−1

provided that ψ̃ψ = ψ.

The choice of α shows that rank ψ̃(fN f
∗
N/α

2) ≤ Ch−n+κρ and
hence we only need to study

tr f ∗N(fN f
∗
N + α2ψ(fN f

∗
N/α

2))−1

which is a pseudodifferential operator in a slightly exotic class
(similar to the one appearing in Hager-Sjöstrand 2008).
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Using pseudodifferential calculus in that class we show that

tr f ∗N(fN f
∗
N + α2ψ(fN f

∗
N/α

2))−1 =

Nn

∫
Tn

f̄ (ρ)dL(ρ)

|f (ρ)|2 + α2ψ(|f (ρ)|2/α2)
+O(h−n+1−2ρ + h−n+(κ−1)ρ) =

Nn

∫
Tn

dL(ρ)

f (ρ)
+ +O(Nn−1+2ρ + Nn−(κ−1)ρ) .

Small modifications based on the estimates of the ranks of
ψ(fN f

∗
N/α

2) and ψ((fN − z)(fN − z)∗/α2) give

tr(fN + αψ(fN f
∗
N/α

2)UNV
∗
N−z)−1 = Nn

∫
Tn

dL(ρ)

f (ρ)− z
+O(Nn−β) ,

β =
κ− 1

κ+ 1
.
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Summing up over γ’s covering ∂Ω and putting together all the
error terms we get, for p > p(n),

Eω
(
|Spec (fN + N−pRN(ω)) ∩ Ω|

)
=

1

2πi

∫
∂Ω

Eω tr(fN + N−pRN(ω)− z)−1dz =

1

2πi

∫
∂Ω

Nn

∫
Tn

dL(ρ)

f (ρ)− z
dz + o(Nn) =

Nn

∫
Tn

1

2πi

∫
∂Ω

dz

f (ρ)− z
dL(ρ) + o(Nn)

= NnvolTn(f −1(Ω)) + o(Nn) .
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